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In fluid analysis, there has been a long-standing problem: lacking a rigorous mathematical tool to map from
a continuous flow field to finite discrete particles, hurdling the Lagrangian particles from inheriting the
high resolution of a large-scale Eulerian solver. To tackle this challenge, we propose a novel learning-based
framework, the neural vortex method (NVM). NVM builds a neural-network description of the Lagrangian
vortex structures and their interaction dynamics to reconstruct the high-resolution Eulerian flow field in
a physically-precise manner. The key components of our infrastructure consist of two networks: a vortex
detection network to identify the Lagrangian vortices from a grid-based velocity field and a vortex dynamics
network to learn the underlying governing interactions of these finite structures. By embedding these two
networks with a vorticity-to-velocity Poisson solver and training its parameters using the fluid data obtained
from grid-based numerical simulation, we can predict the accurate fluid dynamics on a precision level that
was infeasible for all the previous conventional vortex methods. We demonstrate the efficacy of our method
in generating highly accurate prediction results with low computational cost by predicting the evolution of
the leapfrogging vortex rings system, the turbulence system, and the systems governed by Navier-Stokes (NS)
equations with different external forces. We compare the prediction results made by NVM and the Lagrangian
vortex method (LVM) for solving the NS equation in the periodic box and find that the relative error of the
predicted velocity using NVM is more than 10 times lower than that of the LVM. Moreover, our method only
requires data collected from a very short training window, more than 100 times smaller than the prediction
period, which potentially facilitates data acquisition in real systems.

Neural network
Lagrangian dynamics
Eulerian dynamics

1. Introduction

Due to the high number of degrees of freedom in the motion space,
the complex nonlinear coupling between particles, and the susceptibil-
ity to numerical dissipation, reproducing the behavior of fluids with
such features in a physically-accurate manner presents a challenge.
Two general approaches are developed to solve the fluid equations,
one is grid-based, or Eulerian, and the other is particle-based, or
Lagrangian. Conventionally, many pieces of research are done on grid-
based methods mainly to achieve high resolution, for example on
channel flows [1,2], boundary layers [3-5], isotropic turbulence [6—
8], and pipe flows [9]. However, the main drawback of grid-based
methods is their high computational cost that is unaffordable under
many conditions [10]. On the contrary, the particle-based approach is
efficient in computation but suffers from inaccuracy in results [11,12].

Lagrangian vortex methods (LVMs) are well-known particle-based
methods which use vortices as computational elements, mimicking the
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physical structures in turbulence. In LVMs, the Navier—Stokes (NS)
equations are formulated in terms of vorticity in contrast to the con-
ventional formulations with velocity and pressure and are solved using
a Lagrangian approach instead of the Eulerian formulation [13-16].
Discretizing the NS equations with finite particles results in a set of
ordinary differential equations (ODEs) for the particle strengths and
positions [17]. The Lagrangian method has some advantages, such as
its automatic adaptivity of the computational elements, the numerical
conservation of physically conserved quantities, the ability to simulate
phenomena covering many orders of magnitude, and the rigorous treat-
ment of boundary conditions at infinity, in the numerical simulation
of fluids in unsteady flows where the vortex structures play a leading
role. For many typical flows, such as wall-bounded flows [18,19],
wake flows [20-22], and jet flows [23], their vorticity distributions are
usually concentrated in certain regions, which enables us to distribute
the density of the vortex elements precisely. Besides, with Kelvin’s

Received 18 July 2022; Received in revised form 20 November 2022; Accepted 30 January 2023

Available online 1 February 2023
0045-7930/© 2023 Published by Elsevier Ltd.


https://www.elsevier.com/locate/compfluid
http://www.elsevier.com/locate/compfluid
mailto:shiying.xiong@zju.edu.cn
https://doi.org/10.1016/j.compfluid.2023.105811
https://doi.org/10.1016/j.compfluid.2023.105811
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2023.105811&domain=pdf

S. Xiong et al.

circulation theorem directly embedded into the Lagrangian dynamics
of the vortex elements [24], the conservativeness during the numerical
calculation can be reasonably guaranteed. Finally, we can obtain the
incompressible velocity field through the discrete Biot-Savart (BS) law
using vortex elements, showing a weak coupling between evolutionary
quantity and the solenoidal condition of velocity, which can be benefi-
cial to maintain the computational stability in fluid simulations in the
face of physical discontinuities. [25,26].

However, the implementation of the LVM faces a major challenge
which is to model the right-hand sides (RHSs) of the set of ordinary dif-
ferential equations based on the NS equations. Firstly, the assumption
that the vortices are point-like largely limits the use of the continuous
BS law. Second, the drift velocity due to the external force cannot be
obtained using the LVM without knowing the function of the external
force. Even given the function, the LVM still fails to capture the drift
velocity accurately in most cases [24]. Finally, when two particles are
close enough, the singularity of the discrete BS law leads to a significant
numerical error. The above problems make the LVM inaccurate and
inapplicable in solving the underlying fluid dynamics under many
situations [14].

While the development of traditional numerical methods facing
obstacles, fortunately in the last decade, with the drastic advancement
in computational power and data availability, we are presented with
the new hope of approaching these previously elusive systems from a
new angle: a data-driven one powered by machine learning [27-31].
Since brute-force machine learning with conventional toolkits such as
deep neural networks typically suffers from the high dimensionality
of input-output spaces, expensive cost of data, the tendency to yield
physically implausible results, and the inability to robustly handle ex-
trapolation, recent research interests have been focused on embedding
physical priors in learning algorithms so that the networks approach
the data not as wide-eyed infants but as physicists familiar with the
fundamental rules of how our world operates [32-37]. Recently, many
pieces of research are developed to efficiently learn fluid dynamics by
incorporating physical priors into the learning framework, e.g., encod-
ing the NS equations [38], embedding the notion of an incompressible
fluid [39], and identifying a mapping between the dynamics of wave-
based physical phenomena and the computation in a recurrent neural
network [40].

In the realm of learning complex fluid dynamics, various works
have been proposed along this line of thinking, seeking to engrave
the structure of partial differential equations (PDEs) into the network
architectures [41-46]. Ideally, the PDEs should learn to evolve the
flow field without consulting the particular solver to obtain initial-
condition invariance. Still, due to the high dimensionality and the lack
of supervision, the machine-learning community has not solved such a
task to date.

In this work, we propose a novel approach, the neural vortex
method (NVM), to embed prior physical knowledge to elegantly achieve
invariance to initial conditions while at the same time being efficient in
data usage, easy to implement, fast to compute, adaptable to arbitrarily
high precision, and suitable for handling complex, unsteady flows. Our
method is inspired by the vortex method in fluid dynamics, which
discretizes the NS equations with a set of Lagrangian particles —
vortices, based on Helmholtz’s theorems which states that the behavior
of the fluid can be described by several vortex elements flowing with
the fluid [47]. We remark that accurate simulation of complex vor-
tex dynamics requires a large number of Lagrangian vortex particles,
considering the spatially continuous distribution of vortex structures.
However, significant theoretical and numerical errors may occur if
we only advect the fluid with a small number of vortex particles
without considering vortex deformation, external forces, and viscous
dissipation. We aim to establish a method to reconstruct continuous
vortex dynamics with a small number of vortex particles. We model
the position and dynamics of the vortex particles in a data-driven
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manner, and errors can be significantly reduced compared with a direct
formula-based model.

In the same spirit as the LVM, our method learns to describe a
complex fluid dynamics system by first learning to associate a small
number of Lagrangian vortex particles to the observation and simulate
the forward dynamics of these vortices instead. This approach can be
viewed as identifying a compact, physics-based latent space where sim-
ulation can be performed efficiently. To view it another way, instead
of tailoring our networks to solve the governing PDEs, we design our
networks to describe the underlying behavior of our system that such
equations are proven to imply. We show the superiority of our vortex-
based approach to the previous approaches with its ability to generalize
to different initial conditions, adapt to arbitrary precision, learn with
small data sizes, and simulate complex turbulent flows.

Our method brings a new approach to identifying fluid systems ex-
hibiting complex vortical motions. Still, its idea can be enlightening to
other fields as well. We map continuous flow fields to low-dimensional
Lagrangian vortex dynamics to study fluid evolution over time, which
can also be generalized to common physical systems. In general, we can
map the physical space described by PDE to a low-dimensional discrete
space through a neural network to predict the time evolution of the
transformed system and recover to the original physical space through
neural networks or physical prior. We remark that to better preserve the
critical structures, the intrinsic geometric symmetry should be taken
into account when transforming the physical system into a different
space. As incorporating physical priors is an imminent and promising
trend, with this schematically novel approach, our work can potentially
open up a new horizon for future endeavors.

The structure of this paper is as follows. In Section 2, we will first
introduce the NS equations and LVM that serve as the mathematical
foundation of our methodology. Then, we give an overview of our
method in Section 3. The following Section 4 describes the details of our
dataset generation and training settings. In Section 5, we show the nu-
merical results, which compare our methodology with the Lagrangian
method. Lastly, conclusions are drawn in Section 6, with an emphasis
on the significance of our method.

2. NS equations and LVM
2.1. NS equations

Given a fluid velocity field u(x, r) with an incompressible constraint,
its underlying dynamics can be described by the NS equations

Du _ _1 2
{Dt = pr+vV u+f,

V-u=0,

€8]

where 7 denotes the time, D/Dt = d/dt+u-V is the material derivative,
p is the pressure, v is the kinematic viscosity, p is the density, and f
is the body accelerations (per unit mass) acting on the continuum, for
example, gravity, inertial accelerations, electric field acceleration, and
o on.

The alternative form of the NS equations could be obtained by
defining the vorticity field ® = V x u, which leads to the following
vorticity dynamical equation

{%z(a,.v)u+vvzw+V><f, ()

VW = —w, u=VXY,

where ¥ is a vector potential whose curl is the velocity field. Although
this form does not seem to bring any simplification, the key illumina-
tion of doing this transformation stems the Helmholtz’s theorems,[48]
which states that the dynamics of the vorticity field can be described
by vortex surfaces/lines, which are Lagrangian surfaces/lines flowing
with the velocity field in inviscid flows [49,50].
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2.2. LVM

The LVM discretizes the vorticity dynamical Eq. (2) with N particles
resulting in a set of ODEs for the particle strengths I' = {I';|i =
1,..., N} and the particle positions X = {X;|i=1,...,N} as

ar; _
a =t
dx;

T:ui+vi.

€]

Here, the particle strength I'; is the integral of » over the ith compu-
tational element, u; is the induced velocity calculated by BS law
1 S ;XX -X))

o ) 4
AT 20X, — X[ + R @

where n, is the dimension of the flow field. In addition, y; and v; are
the change rate of the particle strength and the drift velocity [24],
respectively. To avoid singularities in the BS law, we introduce the
numerical regularization parameter R in the LVM as R = 0.1. The effect
of the regularization parameter on the dynamics of the flow evolution
of the simulated vortex particles is rather small because of the large
spacing between the vortex particles.

In a two-dimensional ideal fluid flow, i.e., a strictly inviscid
barotropic flow with conservative body forces, the movements of
Lagrangian particles with conserved vorticity strength are determined
by the velocity field they create, thus allowing us to advance the
simulation temporally [14]. However, in the real three-dimensional
flow, under the action of vortex stretching, vortex distortion, viscous
dissipation, external forces, etc., the Lagrangian advection of vortex
particles and their strength need to be corrected by y; and v; in (3).

We remark that the NS equations can be accurately modeled by
the Lagrangian vortex method with a large number of computational
elements and a reasonable discrete distribution. Optimizing the dis-
crete distribution and dynamics modeling by neural networks deserves
further research.

3. NVM
3.1. Methodology

To quantify the fluid dynamics accurately and efficiently, we pro-
pose a novel framework, the NVM, that extracts information from the
Eulerian specification of the flow field (or the images of flow visualiza-
tions) and translates it into knowledge about the underlying fluid field
through physics-informed neural networks. To build a fully automated
toolchain that can extract a high-resolution Eulerian flow field from
the Lagrangian inductive priors, we embed these two networks with
a vorticity-to-velocity Poisson solver, as shown in Fig. 1. The reason
behind this structure is that learning directly from high-dimensional
observations, such as images, is unable to be achieved using traditional
methods since extracting the velocity and pressure fields directly from
the images is challenging.

We construct a vortex detection network in Section 3.2 to identify
the positions and the vorticity of Lagrangian vortices from a grid-
based velocity field, which from a mathematical perspective connects
(1) with (3). In this way, we simplify the vorticity field into a field
only constituted of the identified vortices. Given the detected vortices,
we then use a vortex dynamics network in Section 3.3 to learn the
underlying governing dynamics of these finite structures. Dynamics
networks accurately model the RHSs of (3) under various conditions,
resolving the long-standing problem in LVM.

We train the parameters using high-fidelity data from high-resolution
direct numerical simulation. The model is trained only with informa-
tion collected from the interaction of 2 to 6 vortices. The trained model
can be applied to any arbitrary vorticity field with any number of
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vortices. The training process of NVM consists of 2 major steps: detec-
tion network training and dynamics network training. We utilize data
collected from randomly generated vortices and the corresponding vor-
ticity fields to train the detection network. Direct numerical simulation
(DNS) is used to calculate the data of the evolutionary vorticity fields.
We use the well-trained detection network to identify vortices’ positions
and vorticity strength from the initial and the evolved vorticity fields.
The identified vortices are then used to train the dynamics network.

3.2. Detection network

The input of the detection network is a vorticity field of size
200 x 200 x 1. As shown in Fig. 2, we first feed the vorticity field
into a small one-stage detection network and get the feature map
of size 25 x 25 x 512 (we downsampled 3 times). The detection
network consists of a Conv2d-BatchNorm-ReLU combo and a 6-layer-
structured ResBlock chain whose size can be adjusted dynamically to
the complexity of the problem. The primary reason for downsampling
is to avoid extremely unbalanced data and multiple predictions for the
same vortex. We then forward the feature map to 2 branches. In the
first branch, we conduct a 1 X 1 convolution to generate a probability
score p of the possibility that there exists a vortex. If p > 0.5, we believe
there exists a vortex within the corresponding cells of the original
200 x 200 x 1 vorticity field. In the second branch, we predict the
relative position to the left-up corner of the cell of the feature map if
the cell contains a vortex. Afterward, we set a bounding box of 10 x 10
around these predicted vortices and use the weighted average of the
positions of the cells of the original vorticity field to find the exact
position of the vortex. Finally, the vortex particle strength is calculated
as the sum of the value of the cells in the bounding box normalized by
the cell area.

In the training process, we penalize the wrong position detection
only if the cell containing a vortex in the ground truth given by DNS
is not detected. This idea is similar to the real-time object detection
in Redmon et al. [52]. We do not use the weighted average method to
find the position in the training to ensure the detection network can
produce detection results as accurately as possible. We use the focal
loss [53] to further relieve the unbalanced classification problem.

We mainly use the detection network to generate training data
for the dynamics network because we want to use the high-resolution
data generated by the method mentioned in Section 4.1 instead of by
the approximate particle method (BS law). Moreover, there are many
situations where BS law is inapplicable, as discussed previously in
Section 1. The detection network enables us to find the positions of
the vortices accurately regardless of the situation.

The detection network is responsible for providing necessary in-
formation to the dynamics network. After the training, we use the
well-trained detection network to detect the vortices in the initial
vorticity fields and the evolved vorticity field, both generated by the
method in Section 4.1. We then apply the nearest-neighbor method to
pair the vortices detected in these two fields. Fig. 3 shows the case of
two fields at = 0 and 7 = 0.2. The idea of nearest-neighbor pairing can
be perceived from Fig. 3(c). The sample, or these two fields, is dropped
if different numbers of vortices are detected in the initial and evolved
fields or if a large difference exists in the vorticity of paired vortices.
The successfully detected vortices in the initial and evolved vorticity
fields are passed together into the dynamics network for its training.

We remark that our method does not venture into the detection of
three-dimensional vortex structure. It is more challenging to localize
vortices in complex three-dimensional structures exhibiting tubular or
sheet-like morphology by neural networks. A 3-D vortex identification
model requires a large number of vortex particles, to reduce its compu-
tational cost, a promising direction is to treat vortex elements as line
segments with length and direction as in Xiong et al. [17].
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chain is six-layer structured. The number in the parenthesis is the output dimension.

(a) — (®) ;

— (©) s e S

2t - 2t - 2t .
L ® ] L ] L % ]
1 . 1+ - 1 1
@ © ] ) ] . . ]
O0 1 2 00 2 00 1 2
X X X

Fig. 3. A example of vorticity contour at (a) + = 0, (b) 7 = 0.2, and (c) superposition of + = 0 and 7 = 0.2. The black circles indicate the location recognized by the detection

network. The evolution from (a) to (b) is calculated by DNS.

3.3. Dynamics network

To learn the underlying dynamics of the vortices, we build a graph
neural network similar to Battaglia et al. [54]. We predict the velocity
of one vortex due to influences exerted by the other vortices and the
external force. Then we use the fourth-order Runge—Kutta integrator to
calculate the position in the next timestamp. As shown in Fig. 4, for

each vortex, we use a neural network A(6,) to predict the influences
exerted by the other vortices and add them up. Specifically, for each ith
vortex, we consider the vortex j(j # i). The difference of their positions
can be calculated by diff;;, = pos; — pos;, and their L2 distance is
dist;; = ||diff;; ||,. The input of the A(6,) is the vector (diff;;, dist;;, vort;)
of length 4. Here, pos and vort are detected by the detection network.
The output of A(6,) is a vector with the same dimension of the flow
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Fig. 4. The architecture of the dynamics network. It takes the particle’s attribution as input and outputs each vortex’s position. The ResBlock has the same architecture as in He
et al. [51] with the convolution layers replaced by linear layers. The number in the parenthesis is the output dimension.

field, characterizing the induced velocity of the jth vortex to the ith
vortex. In this way, we can calculate the induced velocity of each vortex
j (j # i) on the vortex i. We sum up all the induced velocities on the
vortex i and treat the result as the induced velocity exerted by the other
vortices.

In addition, we use another neural network A(6,), to predict the
influence caused by the external force, which is determined by the local
vorticity and the position of the vortex. The input of A(6,) is a vector
of length 3. The output is the influence exerted by the environment on
the vortex i, i.e., the induced velocity of the external force to ith vortex.

The reason we separate the induced velocity into two parts, i.e., A(6,)
and A(6,), is as follows. On the one hand, the induced velocities
between vortex particles are global, and exhibit a certain symmetry,
i.e., the vortex particles interact with each other following the same
law. In contrast, the influence of external forces on vortex particles is
usually local and direct; thus, we do not need to consider the interaction
between particles. The effect of the vortex stretching term in three-
dimensional vortex flows or diffusion term in viscous flows is also local
and should be included in network A(6,). Note that both the outputs of
A(6,) and A(6,) are a vector with the same dimension of the flow field.
Thus, we can add the two kinds of influence together, whose result is
defined as the velocity of the vortex i. We feed the velocity into the
fourth-order Runge—Kutta integrator to obtain the predicted position
of vortex i.

In addition, in predicting the evolution of the flow field, NVM
replaces the discrete BS method with a dynamics network composed of
ResBlocks. We chose a 5-layer ResBlocks to improve the expressiveness
of the dynamics network so that we can learn dynamics of different
complexity on the same network. Since the dynamics network with
5-layer ResBlocks is more complex than the discrete BS method, the
computational cost of NVM is higher than that of the Lagrangian
vortex method. We remark that although the computational cost of
ResBlocks itself is relatively large in NVM, the number of vortex par-
ticles needed to predict the evolution of the flow field using NVM is
much smaller. Therefore, the overall computational cost of NVM can
be greatly reduced.

4. Dataset generation and training settings
4.1. Dataset generation and training settings

We randomly sample 2 to 6 vortices and create the initial vorticity
field through convolution with a Gaussian kernel ~ AN'(0,0.01). This
process is repeated 2000 times to generate N, = 2000 samples. DNS
is performed to solve (1) in the periodic box using a standard pseudo-
spectral method [55]. Aliasing errors are removed using the two-thirds

truncation method with the maximum wavenumber &, ~ N/3. The

Fourier coefficients of the velocity are advanced in time using a second-
order Adams-Bashforth method. The time step is chosen to ensure that
the Courant-Friedrichs-Lewy number is less than 0.5 for numerical
stability and accuracy. To obtain accurate DNS data samples, we set
the grid size as N = 1024. Regarding the kinematic viscosity, we set
v = 0 for the cases in Section 5.4 and v = 0.001 in the other cases. The
pseudo-spectral method used in this DNS is similar to that described in
Xiong and Yang [50,56,57].

We use Ny, = 0.9N,; = 1600 samples with the time span T,,;, for
the training of the dynamics network. The DNS dataset is generated
with random initial conditions independent of the predicted vortex
evolution. The time step of vortex evolution is set as dz. For the leapfrog
example, we set the parameters as 7},,, = 1 and dr = 0.001. For the
turbulent flow example, we set the parameters as 7},,, = 0.001 and
dt = 0.001. For other examples, the parameters are set as T},,;, = 0.2
and dt = 0.1. In general, the parameters are chosen within a wide range,
indicating the robustness of the network. We use the trained network to
predict the vortex dynamics at time T),,,;.,- We show that the prediction
time span T,g;.,, 1S larger than the training time span 7,,,, in the
results section, in some cases up to tens of times of T},,;,.

For both the detection network and the dynamics network, we
use Adam optimizer [58] with a learning rate of 1le—3. The learning
rate decays every 20 epochs by a multiplicative factor of 0.8. For the
detection network, we use a batch size of 32 and train it for 350
epochs. We use the cross entropy as the classification loss and L1 loss
for position prediction. To relieve the unbalanced data problem in the
detection network, we implement Focal loss [53] with « = 0.4 and
y = 2. It takes 15 min to converge on a single Nvidia RTX 2080Ti GPU.
For the dynamics network, we use a batch size of 64 and train it for
500 epochs. We use L1 loss for position prediction. It takes 25 min to
converge on a single Nvidia RTX 2080Ti GPU.

rain

5. Results

We demonstrate the efficacy of our method in generating highly ac-
curate prediction results, with low computational cost, for the leapfrog-
ging vortex rings system, the turbulence system, and the systems gov-
erned by NS equations with different external forces that are challeng-
ing to model for the LVM.

5.1. Comparison between NVM and LVM

To demonstrate that NVM is a better approach to capturing fluid
dynamics than the traditional LVM, we compare the prediction results
of the NVM and the LVM for solving NS equations in the periodic box.
In the prediction, we initialize two vortex particles at X | = (r—0.4, 7 —
0.6) and X, = (#+0.4, 7+0.6), where the corresponding particle strength
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Fig. 5. Comparison of NVM and LVM for solving NS equations in the periodic box. (a) NVM, (b) LVM, and (c) The relative error of velocity in flow simulation. The red dots
indicate the positions of 2 vortices at different time steps generated by DNS. The black circles in (a) and (b) are the prediction and simulation results of the NVM and LVMs,

respectively. The black arrows indicate the directions of the motions of the 2 vortices.
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Fig. 6. Vorticity field predicted by 4 NVM vortices under the initial condition of leapfrogging vortex rings at r = 0, t = 11, + = 22, and ¢ = 33. Vortices are indicated by the

white-black circles. For better visualization, we use 80000 tracers.

are I' = 0.75 and I, = 0.75. We plot the results using the NVM and LVM
and the relative error of velocity in the simulation in Fig. 5(a), (b), and
(c), respectively. Here, the relative error of velocity is defined as

_ ”upredict - utrue”L2
=

, (5)

”utrue ”L2

where u,,;;., denotes the predicted or simulated solution and u,,,
denote the ground truth solution. It is quite obvious that in Fig. 5(a),
the predictions made by NVM match the positions of vortices generated
by DNS almost perfectly, while the predictions made by BS law in
Figs. 5 (b) contain a large error. The divergence of the relative error of
velocity is shown in Fig. 5(c), which shows that the NVM outperforms
traditional methods by increasing amounts as the predicting period
becomes longer.

5.2. Leapfrog vortex
A classic example of interesting vortex dynamics is the leapfrogging

vortex rings, which is an axisymmetric laminar flow. This example
demonstrates our method’s ability to keep the fluid field’s symmetric

structure. Here, we use NVM to predict the motions of 4 vortices and
add 80000 randomly initialized tracers for better visualization. Since
the tracers do not affect the dynamics of the underlying vorticity field,
we use BS law to calculate the motions of these tracers for faster
visualization. In the prediction, we initialize four vortex particles at
X, =(0,1), X, =(0,-1), X5 =(0,0.3), and X, = (0,—-0.3), respectively,
where the corresponding particle strength are I = 0.8, I, = —0.38,
I'; = 0.8, and I, = —0.8. Although the time span of the training samples
is T,,in = 1, we predict the evolution of vortex dynamics with a time
span T,,,4;, of more than 30. Fig. 6 shows the evolution of the vorticity
field predicted by NVM under the initial condition of leapfrogging
vortex rings att =0, t = 11, t = 22, and ¢ = 33. NVM accurately captures
the symmetric structure of the leapfrogging vortex rings without losing
such features as time evolves. In addition, the velocity field at the r = 10
is visualized in Fig. 7. Here we show the spatial distribution of the
direction and magnitude of the velocity field. We can further see that
the NVM maintains the intrinsic symmetry of the leapfrog vortex flow.

In the vortex evolution simulated by the DNS grid method, the
spatially continuous vortices are distorted into spiral structures during
the interaction, and thus the mutual induction velocity of leapfrog
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Fig. 7. Velocity field of the leapfrog vortex at 1 = 10. The black arrow lines are the fluid streamlines. The contours represent the velocity components in (a) x-direction and (b)

y-direction, respectively.
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Fig. 8. Comparison of NVM and LVM for solving leapfrog vortex flow with same number of vortex particles. (a) The relative error of velocity in flow simulation. (b) The trajectories

of four vortex particles at different times from ¢ =0 to 40.

l(b)

Fig. 9. Two-dimensional Lagrangian scalar fields at r = 1 with the initial condition ¢ = x and resolution 2000%. The evolution of the Lagrangian scalar fields is induced by (a)

0O(10) and (b) O(100) random NVM vortex particles.

vortices is slowed down accordingly. The extent of this evolution
cannot be achieved by modeling the mathematical equations of only
a few vortex particles. In Fig. 8, we compare NVM and LVM to solve
leapfrog vortex flow. LVMs require a large number of vortex particles to
accurately simulate such vortex interactions. We use neural networks
to learn the intrinsic dynamics to accurately reconstruct the complex
vortex dynamics with a small number of vortex particles in a data-based
manner.

5.3. Turbulent flows

Besides simple systems like leapfrogging vortex rings, NVM is ca-
pable of predicting complicated turbulence systems. This example’s
primary purpose is to illustrate our network’s ability to handle more
complex problems.

Fig. 9 depicts the two-dimensional Lagrangian scalar fields at t = 1
with the initial condition ¢ = x and resolution 20002. The governing
equation of the Lagrangian scalar fields is

d¢

5 Tu Ve =0. ©
The evolution of the Lagrangian scalar fields is induced by O(10) and
O(100) NVM vortex particles at random positions « U (0, 4) with random
strengths «~ U(0,2). We remark that the same trained model is used for
both cases. There is no correlation between the positions and vortex
particle strengths of the two sets of vortex particles.

Based on the particle velocity field from the NVM, a backward-
particle-tracking method is applied to solve (6). Then the iso-contour
of the Lagrangian field can be extracted as material structures in
the evolution [59-63]. In Fig. 9(a), the spiral structure [64,65] of
individual NVM vortex particles can be observed clearly due to the
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Fig. 10. The relative errors of velocity for predicting the problem in Fig. 9(b) with
different particle sizes. Here N, is the number of NVM particles used to predict
the fluid evolution.

small number of NVM vortex particles. In Fig. 9(b), the underlying field
exhibits turbulent behaviors since it is generated with a large number
of NVM vortex particles.

Generally, the high-resolution results shown in Fig. 9 can only be
achieved by supercomputation using grid-based methods [59], while
NVM allows these to be generated on any laptop with GPU. We demon-
strate that NVM is capable of generating an accurate depiction of
complex turbulence systems with low computational costs.

We show in Fig. 10 the relative errors of velocity for predicting the
problem in Fig. 9(b) with different particle sizes. It can be seen that the
flow evolution predicted by the NVM converges to the exact solution
simulated by the DNS grid method as the number of NVM particles
increases.

5.4. NS equations with different external forces

In Fig. 11, we show NVM'’s ability to stably make accurate pre-
dictions of fluid dynamics governed by NS equations with different
external forces, which are

f=0,
f = (0.050,0), @)
f =0.02w[cos(x — x,), — sin(y — y)I,

where w represents the vorticity, and (x.,y.) = (z, ) is the center of
the computation domain. In the prediction, we initialize four vortex

(a) (®)
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particles at X; = (r — 03,7 — 0.5), X, = (z + 03,7 — 04), X5 =
(r+0.3,7 +0.5), and X, = (z — 0.3, 7 + 0.4), where the corresponding
particle strength are I'j = 0.75, I, = —0.75, I'; = 0.75, and I, = —0.75.
Here, we did not plot the results generated by LVM because LVM is
incapable of solving the fluid dynamics with nontrivial external forces
since it fails to capture the drift velocity v; caused by the external force.

We compare the relative errors of velocity in Fig. 12. It shows that
for the case in Fig. 12(a) without external force, NVM and LVM behave
similarly, which is also related to the relatively short evolution time.
Despite this, we can see that LMV shows a rapid error increase in
Figs. 12(b) and 12(c).

6. Conclusion

We propose a novel learning-based framework, NVM, which builds
a neural-network description of the Lagrangian vortex structures and
their interaction dynamics to reconstruct the high-resolution Eulerian
flow field in a physically-precise manner. We demonstrate the efficacy
of our method in generating highly accurate prediction results, with
low computational cost, for the leapfrogging vortex rings system, the
turbulence system, and the systems governed by NS equations with
different external forces. Our method is the first approach to utilizing
the motions of finite particles to learn infinite dimensional dynamical
systems. Featured by its unique ability to generate highly accurate pre-
diction results with low computational cost, NVM marks a significant
advancement in numerical fluid simulation.

Our method has the following limitations. We train the network
with a vorticity field dataset rather than an experimentally measured
velocity field dataset. While ideally the latter is an interesting and
promising study worth exploring in the future, given that more exten-
sive datasets and complex network structures are probably required to
train the network using velocity field datasets, we have not ventured
into this area yet. In addition, for the particle system in our neural
network, the computational cost O(N?) of the particle interactions
limits larger-scale numerical simulations.

In the future, we will explore a broader range of applications of
NVM. Our method only considers two-dimensional flows. In fact, natu-
ral flows have high-dimensional complexity and pose a more significant
challenge to the training of detection neural networks. Additionally, for
flows with stationary or moving boundaries, the vortex structures are
concentrated near a thin boundary layer, and we should design neural
networks that take into account the boundaries in a general network
framework. Moreover, since our detection network takes pictures as
input, an interesting direction is to use high-resolution experimental
flow fields as training datasets and use the trained model to predict
fluid evolution.

(c)
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®
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Fig. 11. Prediction results using NVM for three cases with (a) f =0, (b) f = (0.05w,0), and (c) f = 0.02w[cos(x — x,), —sin(y — y.)]. The black arrows indicate the directions of the
motions of the 2 vortices. w represents the vorticity, and (x,,y.) is the center of the computation domain.
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