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ABSTRACT

We propose a feasible method for constructing knotted vortex tubes with the finite thickness and arbitrary complexity and develop an accurate
algorithm to implement this method in numerical simulations. The central axis of the knotted vortex tube is determined by the parametric
equation of a given smooth and non-degenerate closed curve. The helicity of the vortex tube is only proportional to the writhe of the vortex
axis, a geometric measure for coiling of vortex tubes. This vortex construction can facilitate the investigation of the conversion of writhe to
twist in the helicity evolution of knotted vortex tubes. As examples, we construct velocity—vorticity fields of trefoil, cinquefoil, and septafoil
vortex knots. These vortex knots are used as initial conditions in the direct numerical simulation of viscous incompressible flows in a periodic
box. In the evolution of vortex knots from simple flows to turbulent-like flows, all the knots are first untied. Then the vortex topology is
invariant and the helicity is almost conserved for the trefoil knot, whereas the helicity decays rapidly during the breakdown and coaxial
interactions of pinch-off vortex rings for cinquefoil and septafoil knots.
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I. INTRODUCTION

Helicity is a topological measure of linking and knotting of vor-
tex lines"” and is an invariant of the Euler equation of ideal fluid
flows. The importance of helicity is underscored by the growing
impact of links and knots on various physical systems, e.g., fluids,’
plasmas,’ and liquid crystals,” and by the emerging experimental
technique for the complete measurement of helicity.”

However, the analysis of helicity is very challenging for general
flows. Similar (o the analysis of magnelic helicity,” if a flow field can
be divided into subregions bounded by vortex surfaces, the helic-
ity can be decomposed into a sum of the internal helicity, produced
by the vorticity and induced velocity inside each subregion, and the
external helicity, produced by the induced velocity inside each sub-
region and the vorticity inside the other subregions. The external
helicity can be comprehensively characterized by the linking num-
ber and vorticity flux.”” On the other hand, the internal helicity is
only known to be related to the geometry, topology, and vorticity
distribution of vortex lines within a vortex surface, and it is difficult
to be explicitly expressed and accurately quantified.

The issue of characterizing the internal helicity can be par-
tially resolved for some special cases, so it is possible to calculate
the helicity in some flow fields with finite-sized vortex tubes, instead
of using the analysis based on vortex filaments.”" For an unknot-
ted vortex ring consisting of nested toroidal vortex surfaces, the
helicity can be derived as an explicit expression based on toroidal
and poloidal vorticity fluxes.”'’ This expression is generalized to
knotted vortex tubes by introducing a “zero-framed” coordinate
system.''

In particular, Moffatt'* noticed that the internal helicity of vor-
tex tubes is related to the Calugireanu invariant,"” also referred to as
the self-linking number."* The self-linking number is a sum of two
geometric quantities, the writhe and the normalized total torsion.
Thus coiling and twisting of vortex tubes are often considered as two
factors affecting the helicity,””""" but it is difficult to isolate each
of them in flow analysis. Although the experiment of helical vortex
leapfrogging” shows some evidence that the mechanism of conver-
sion of writhe to twist (and vice versa) during vortex reconnection
is important for the helicity conservation even in a viscous flow,
the computational investigation of the conversion between writhe

Phys. Fluids 31, 047101 (2019); doi: 10.1063/1.5088015
Published under license by AIP Publishing

31,047101-1



Physics of Fluids ARTICLE

and twist in a complex, fully three-dimensional phenomenon is still
extremely challenging.”

In the present study, we extend the method of Chui and
Moffatt'" for magnetic flux tubes to construct the vorticity fields for
knotted vortex tubes. The central axis of the vortex tube is prescribed
by a smooth and non-degenerate closed curve. Thus this method can
construct a vortex tube with the arbitrary geometry and topology
specified by the given parametric equation of curves, and it appears
to be more feasible for constructing complex vortex knots than
the methods'*”" relying on tailored Clebsch potentials.”’ Further-
more, we prove that the generated vorticity field from the present
method is strictly divergence-free, without using the additional pro-
jection which may slightly modify the specified vorticity of vortex
tubes.'””” In particular, the helicity of our constructed vortex tubes
only depends on the writhe without the normalized total torsion, so
we can isolate the effect of the writhe in the investigation of helicity,
e.g., the conversion between writhe and twist.

Then we develop an accurate numerical algorithm to construct
the compactly supported vorticity of knotted vortex tubes in Carte-
sian coordinates. In principle, our method can generate knotted
tubes with finite thicknesses and arbitrary complexities. As exam-
ples, we construct trefoil, cinquefoil, and septafoil vortex knots.
The corresponding vorticity fields are used as initial conditions of
the direct numerical simulation (DNS). The evolution of the vor-
tex knots involves signature vortex dynamics, such as vortex knot
untying,'*”’ reconnection,”*”" and breakdown.”’

The outline of this paper is as follows: In Sec. 11, we develop
a theoretical method to generate the vorticity field of a vortex tube
from a given parametric curve. In Sec. 111, we describe the numeri-
cal algorithm for the vorticity construction in Cartesian coordinates,
and then construct three knotted vortex tubes with increasing com-
plexity. In Sec. IV, we carry out the DNS of the vortex knots and
discuss the vortex dynamics. Some conclusions are drawn in Sec. V.

Il. THEORETICAL CONSTRUCTION OF VORTEX TUBES
A. Parametric curve

The initial vortex tube is constructed from a given continu-
ous and differentiable closed curve C without vanishing curvature

/ [/ p=lz—c|
t-f y x=c+pcosON + psinfdB
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in three-dimensional Euclidean space R?. The parametric equation
of Cis x = ¢(s), where x = (x, y, z) denotes spatial Cartesian coordi-
nates and s € [0, L¢) is the arc-length parameter with the length of
curve Lc. The Frenet-Serret frame on C is

di\l = —xT + 1B, (1)
ds

dB

— = 1N,

ds v

where T = dc/ds denotes the unit tangent, N = (dT/ds)/|dT/ds|
denotes the unit normal, B = T x N denotes the unit binormal, x
denotes the curvature, and 7 denotes the torsion of the curve.

The local polar coordinate system'' along curve C is intro-
duced to facilitate the construction of the vorticity w = V x u of
vortex tubes, where u denotes the velocity. Figure 1 illustrates the
local polar coordinates (p, 8) in the plane Sc spanned by N and B
and normal to T, where p = |x — ¢|> 0 is the distance from ¢(s) and
0 € [0, 2m) is the angle from the direction of unit normal N in Sc.
Thus Cartesian coordinates x can be expressed as

x =c(s) + pcosON + psin OB, (2)

and curve C is considered as the central axis of the vortex tube.

Equation (2) gives the transformation between coordinate sys-
tems (s, p, 6) and (x, y, z). From Eqs. (1) and (2), we derive the
Jacobian matrix

Os Op 00
| 9 9
F= Os Op 00 3)
Os Op 00
between the two systems as
J =[(1—-xpcosB)T — 1psin ON + 1pcos B; cos N
+ sin OB; —psin ON + pcos OB], (4)

FIG. 1. The schematic diagram on the relation between
coordinates (s, p, 6) and (x, y, z). The vortex tube is
sketched by dashed curves, and its central axis is marked
by the blue solid curve.

Sc: the plane spanned by N and B
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and the Jacobian determinant is

det(J) = p(1 - px cos ). (5)
In the subdomain 0 < p < R, with the minimum radius of curvature
R« = min(1/x), the mapping from (s, p, 8) to (x, y, 2) in Eq. (2) is
locally invertible owing to det(J) > 0. In addition, if curve C is not
self-intersecting, s can be uniquely determined by x at p = 0. Since
the points in the proximity of C have small p, we assume that the

radius of the vortex tube Ry, < Ry is so small that (s, p) can be uniquely
determined by x in the subdomain p < R,,.

B. Vorticity of the vortex tube

Based on the coordinate system (s, p, 8), we specify the vorticity
of vortex tubes as
w(s,p.0) =Tf (p)T(s), (6)
where the constant I denotes the strength of the vorticity flux along
vortex axis C, and the compactly supported kernel function f(x) with
x € [0, oo) satisfies

f(x) = 0, X 2> R’U)
{ 7

R, 1
.[o f(x)xdx = o

As proved below, the vector field constructed by Eq. (6) is solenoidal,
which satisfies the definition of vorticity.

Theorem 1. The vector field constructed by Eq. (6) is divergence-

free.
Proof 1. Taking the divergence of Eq. (6), we have
V- w(sp.0) = T[V/(0) - T() +£(0)¥ - T(5)]
2w 19 450 Vs] ®

Applying the inverse function theorem to Eq. (4), we have

T

- m, Vp = cosON + sin 6B. 9)

Substituting Eq. (9) into Eq. (8) yields V - w = 0.

We remark that the vorticity Eq. (6) constructed in the local
polar coordinates is uniquely defined in the Cartesian coordinates
x € R’ because (s, p) and (x, y, z) have one-to-one mapping in the
subdomain p < R, and Eq. (6) is independent of 6. Furthermore,
Eq. (6) is vanishing in the subdomain p > R, where the mapping
from (s, p, 6) to (x, y, z) can be singular.

C. Helicity of the vortex tube

In this subsection, we demonstrate that the specific vorticity
Eq. (6) corresponds to the vortex tubes with the writhe-dependent
helicity. Here, the helicity of a flow field is defined as

H= fghdg, (10)

where h = u - w is the helicity density, Q denotes the entire flow
domain, and dQ is the volume element. The velocity u can be
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obtained from the vorticity via the Biot-Savart law, and then the
helicity becomes

H=%ngf“’(x) o) x (-) y040. ()

e — %'

where dQ’ is the volume element at x.

In general, the helicity is hard to calculate by the multi-volume
integral in Eq. (11), but it can be computable for some special
velocity-vorticity fields. For the knotted vortex tubes consisting of
nested toroidal vortex surfaces, Chui and Moffatt'' proposed a fea-
sible approach to obtain the explicit expression of helicity based on
the “zero-framed” coordinate system

¢c=s,
X = ¢u(sp0), (12)
¢ = ¢a(s,0).
Here, ¢ (s, p, 0) is a vortex-surface field (VSE)”’ surrounding vortex
axis C. The VSF satisfies the constraint
w - V¢v =0, (13)

i.e., the isosurface of ¢, is a vortex surface consisting of vortex lines.
Moreover, ¢q(s, 0) in Eq. (12) denotes a special angle variable which
makes the ribbon-like isosurface of ¢, = constant “untwisted” in the
sense that its boundaries C at y = 0 and I'y at y = 1 have vanishing
linking number."'

With the aid of the zero-framed coordinate system, toroidal and
poloidal vorticity flux functions T(x) and P(x) in the helicity calcu-
lation for unknotted vortex rings”'” are extended to knotted vortex
tubes.'' Here, T(x) denotes the vorticity flux through the cross sec-
tion Sg(x) at ¢ = constant with (y, ¢) € [0, x] x [0, 27r) and P(x)
denotes the vorticity flux through the ribbon Ry (x) at ¢ = constant
with (g, x) € [0, L¢) x [0, x].

In Eq (12), the VSF y = ¢ (s, p, 6) can be constructed from the
vorticity”” by solving the constraint Eq. (13). Since w in Eq. (6) is
normal to Vpin Eq. (9) as w - Vp = 0, we simply choose

p
= = 14
=R, ()

as the normalized VSF. The angle variable ¢ = ¢4 (s, 0) is set to be'!

2
$=6+ "ﬁs (15)
where the self-linking number'*

Ls=W,+T; (16)

is decomposed into the writhe
1 jg yg [N(s) x N(s")] - [e(s) -
Wy =—
4 Jc Je le(s) —e(s)P
and the normalized total torsion'’

T = 1§£ rds. (18)
21

gy 7

The extra part 2nLss/Lc in Eq. (15) offsets the twist generated on
the ribbon defined by ¢ and N."
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After establishing the zero-framed coordinate system, Chui and
Moffatt'' derived a general expression of helicity as

H- 2[01 T(x)dlji—(xx)dx. (19)

We substitute Eqs. (14) and (15) into Eq. (12) and apply Eq. (2) to
yield a specific transformation between coordinate systems (¢, x, ¢)
and (x, y, 2) as

x = o() + Ru[cos(6 - ZEIN() +sin(0 - 256 )m(o) |
(20)

28

Instead of using the implicit methods,""** we compute the toroidal
and poloidal vorticity fluxes in Eq. (19) directly from their defini-
tions as

T(x)Effsg(x)w-ndS:foxfohw-(g—;xg—;)dqﬁdx @1

and

P(X)EffR¢(X)w-ndS:/0xj§:w~(g—zxg—;)dgd)b 22)

respectively, where dS denotes the surface element and #n denotes the
normal of S¢ or R, Substituting Lgs. (6) and (20) into Egs. (21) and
(22) yields

T(x) = 2nTR;, fx)(f(XRv)dX,
0
, 1 . (23)
P(x) = ZHFRU(ES "5 ,Séng) [0 xf(xRv) dy.

Finally, substituting Eq. (23) with Egs. (16) and (18) into

Eq. (19), we obtain
H=T"W,. (24)
Therefore, the helicity of the vortex tube constructed by Eq. (6) is
only proportional to the writhe without the contribution from the

twisting of vortex lines inside the tube, which can isolate the writhe
effect in the study of the internal helicity of vortex tubes.

Ill. NUMERICAL CONSTRUCTION OF KNOTTED
VORTEX TUBES

A. Transformation of coordinate systems

The vorticity Eq. (6) is specified in terms of polar coordinates
(s, p) along curve C, but in the numerical implementation, we con-
struct w(x) in terms of Cartesian coordinates x, so we need to trans-
form x into (s, p) by Eq. (2). For a given x € R?, we determine (s, p)
by
s € argmin|x — ¢({)|,

p=minfx— (9, 29

and the validity of Eq. (25) is justified below.
Theorem 2. The coordinates (s, p) defined by Eq. (25) are iden-

tical to those implicitly determined by Eq. (2) in the subdomain with
P<Ry.
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Proof 2. For given x € R®, suppose (s, p) is determined by
Eq. (25) in the subdomain with p < Ry. Then s must be a stationary
point of |x —¢(¢)|* from Fermat’s theorem, i.e.,

2

dxe=c@F _ ope— e()]-T(s) =0 (26)

d¢ [=s

Hence, x corresponding to s is on the plane Sc normal to curve C, and
x can be expressed by Eq. (2). Since the mapping between (s, p) and
X is one-to-one in the subdomain with p < R, the coordinates (s, p)
determined by Eq. (25) are the same as those implicitly determined by
Eq. (2).

We develop a very accurate algorithm for computing Egs. (6)
and (25), which is described in Appendix A in detail. We find that
various implementation methods for Eq. (25) can have an impact
on the consistency of helicity calculations and the smoothness of
the constructed vorticity field from numerical experiments, so the
algorithm design is critical for the accurate vorticity construction.

B. Construction of knotted vortex tubes

We construct vortex tubes in the form of three given torus
knots,”” and their parametric equations ¢({) = (cx({), c(0), c2(0))

e ci() = 7+ (Re + 11 cos(q0)) cos(p()),
cy(Q) = m+ (Re + 11 cos(gQ)) sin(pQ)), (27)
cz({) = m— 1.5 - rrsin(q{),

where R; = 1 and r; = 0.5 are the major and minor radii of a torus,
respectively, and (p, q) are selected as (2, 3), (2, 5), and (2, 7), which
represent trefoil knot with Ls = 6, cinquefoil knot with L5 = 10,
and septafoil knot with Ls = 14, respectively.”’ Here, { € [0, 27)
is not an arc-length parameter, but this does not affect the vorticity
construction because we can normalize the unit tangent by Eq. (B1)
in Appendix B.

In the specified vorticity Eq. (6), the strength of vorticity flux is
set to I = 2 and the vorticity flux distribution f is set to be a Gaussian

function ,
! exp( X ), (28)

F) = 2702 T 202

where the standard deviation is set to ¢ = 0¢ with g¢ = 1/ (8\/?1)
~ 0.05. The corresponding radius of the vortex tube is estimated as
Ry, » 50. The vortex tube with the small R,, contains over 99.999% of
the vorticity magnitude in Eq. (6), so we consider this vorticity field
as compactly supported.

We construct the knotted vortex tubes in a period box of side
L =2 and calculate the incompressible velocity field by

-1 ik x @
- =22, 2
“=r ( rE ) @

where F~' denotes the operator of inverse Fourier transform, k
denotes the wavenumber in Fourier space, and @ = F(w) denotes
the Fourier coefficient of @ with the Fourier transform operator F.
The computational domain is discretized on uniform grid points N°
with N =512.

We assess the quality of the numerical construction of three
knotted vortex tubes with the writhe-dependent helicity by using
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TABLE I. Summary of parameters and geometricalitopological quantities in the
numerical construction of three torus vortex knots.

(P> q) RK W‘f Tt [,S H €H

(2,3) 072 352 248 6 14.07 63x1077
(2,5 0.6 687  3.13 10 2747 1.0x107°
(2,7) 056 1054  3.46 14 4217 46x1077

Eq. (24). The important geometrical and topological quantities in
the construction of torus knots are summarized in Table I. The geo-
metric quantities Ry, Wy, and Ty of the curve are calculated using
formulas in Appendix B. The resultant Ry verifies the assumption R,
< Rg. The self-linking number Ls is calculated by Eq. (16), and the
results agree with the definitions of three torus knots.

The helicity H is calculated by Eq. (10) with the numerical inte-
gration of the product of computed velocity Eq. (29) and vorticity
Eq. (A14) over the periodic box. The relative numerical error in Eq.
(24) is defined as

_H-T*wW]
L H-Tw

, 30
IH] (30)

and the negligible errors in Table I indicate that the numerical
construction is very accurate. The validation of Eq. (24) also indi-
cates that the normalized total torsion T in Table I, characterizing
the twist of the unit normal N along the vortex axis ¢, does not
contribute to the helicity for the specified form of vorticity Eq. (6).

Figure 2 shows isosurfaces of |w| for three vortex knots. We
observe that the vorticity field is smooth and compact, so the con-
structed vortex knots are suitable for initial conditions of DNS.
Moreover, the isosurfaces are color-coded by the helicity density,
and all the vortex tubes have h > 0, indicating that velocity and
vorticity fields have the same chirality.

We remark that |w| for Eq. (6) is an exact VSF owing to

df(p)

d—pT(S)'V/FO, (31)

-Vl = I’ (p)

as the vortex lines integrated from points on isosurfaces of |w| are
perfectly on the surfaces. Thus, || can be used as the initial condi-
tion for the evolution of VSF’' in the Lagrangian-like study of vortex
dynamics.

scitation.org/journal/phf

The momentum of a vortex ring or knot in fluid at rest at
infinity is related to the impulse

I= % fffRax x w(x)dQ ~ % fffﬂx x w(x)dQ, (32)

which can be approximated by the integral over the periodic domain
Q for the highly compact vortex tubes in Eq. (6) at the initial time. As
a theoretical estimation for the vortex filament with vanishing thick-
ness, substituting wd€Q2 = I'dc implied by Eq. (6) to Eq. (32) yields

I=TS, (33)

where § = $cc x de/2 is the directed area enclosed by curve C.”
Irom Eq. (33), the torus vortex knots specified by Eq. (27) have the
same I = (0, 0, 4.57) for (p, q) = (2, 3), (2, 5), and (2, 7). For the
constructed knotted vortex tubes with finite thicknesses, the numer-
ical integration of Eq. (32) also gives I ~ (0, 0, 14.17), very close to
the result from Eq. (33), for all three vortex knots at the initial time.
Since the impulse is a motion invariant,”” it helps to characterize
the evolutionary geometry of vortex knots, which will be discussed
in Sec. [V B.

IV. EVOLUTION OF KNOTTED VORTEX TUBES
A. DNS

We take velocity fields of trefoil, cinquefoil, and septafoil vortex
knots as initial conditions and calculate the evolution of each vortex
knot using DNS. The fluid velocity field u(x, t) of an incompressible
viscous flow is governed by Navier-Stokes equations

du
ot
V'u:(),

+(u V)u——lv +vVu
p' 7 : (34)

where t denotes the time, p denotes the pressure, p denotes the
density, and v denotes the kinematic viscosity.

The DNS is performed to solve Eq. (34) in the periodic box
using a standard pseudo-spectral method.” Aliasing errors are
removed using the two-third truncation method with the maxi-
mum wavenumber kmax ~# N/3. The Fourier coefficient @ = F(u)
of the velocity is advanced in time using a second-order Adams—
Bashforth method, and the time step is chosen to ensure the
Courant-Friedrichs-Lewy number less than 0.5 for numerical sta-
bility and accuracy. The numerical solver used in this DNS has been
validated and used in various applications.”*®

I [ [

FIG. 2. Isosurfaces of |w| = 40 of ini-
tial knotted vortex tubes. The isosurfaces
are color-coded by the helicity density.
Some vortex lines are integrated on the
surfaces. (a) Trefoil knot, (b) cinquefoil
knot, and (c) septafoil knot.
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In the present DNS, we take v = 0.001, and the Reynolds num-
ber is Re = I'/v = 2000, which is comparable to the choices of T in
previous simulations of vortex tubes.'”””*® The spatial resolution
kmaxt is always greater than 2.7 in the temporal evolution from initial
simple flows to turbulent-like flows at the late stage, which satisfies
the criterion” kmax#7 > 1.5 for resolving the smallest scales in tur-
bulence. Here, 77 = (v*/¢)'/* denotes the Kolmogorov scale with the
mean dissipation rate e = v ¥, (|k|fi])2.

B. Numerical results

We present the major flow statistics and important events of
topological changes of vortex tubes and then analyze the relations
between the flow statistics and vortex dynamics. Figure 3 plots the
temporal evolution of the total energy Eir = Y |ﬁ|§/2, mean dissi-
pation rate, and helicity. We observe that E; monotonically decays
in all three cases, and ¢ generally decays but has an intermediate
peak for the trefoil knot and two peaks for cinquefoil and septafoil
knots. The occurrence of these intermediate peaks of ¢ can be related
to the knot untying'“”" and reconnection”""’ of vortex tubes. By
contrast, the helicity is associated with the linking number, writhe,
and twist, and the conservation of H in viscous flows is generally
unclear. Despite under the viscous effect, H for the trefoil knot is
remarkably conserved, which agrees with the former observation in
experiments'* because as vortex knots disentangle, they can create
helix-like coils with the same total helicity at the mean time. On
the other hand, H for cinquefoil and septafoil knots decays sharply
after a short transition time. These observations imply that, com-
pared with the trefoil knot, some different vortex dynamics should
play an important role in the evolution of cinquefoil and septafoil
knots.

Figure 4 depicts the evolution of isosurfaces of |w| at t = 1, 2, 3,
and 5. All the isosurfaces are color-coded by h. In general, the occur-
rence of important events of topological changes in the evolution of
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vortex knots coincides with the intermediate peaks of ¢, and esti-
mated occurrence times are summarized in Table I1. All the vortex
knots first untie into upper and bottom vortex rings with significant
vortex reconnection. The untying time decreases with the increasing
self-linking number of initial knots. The topological change of vortex
lines/tubes causes the significant variation of & and the generation of
notable negative h.

Subsequently, the topology of the two coiled rings untied from
the trefoil knot does not change in time, and positive & on the
rings is well preserved. By contrast, the bottom vortex rings untied
from cinquefoil and septafoil knots “break down” into five and
seven smaller vortex rings, respectively. This complicated topolog-
ical change does not occur for the trefoil knot, and it appears to
significantly weaken positive i or generate negative h so that H for
cinquefoil and septafoil knots drop sharply around t =2 and t = 5,
respectively.

Additionally, a clear intermediate and highly distorted vortex
ring is pinched off in the disentanglement of the initial septafoil
knot, and then this intermediate ring accelerates towards the upper
ring with coaxial interactions of vortex rings'' and further break-
down. Thus the septafoil vortex knot evolves into a turbulent-like
flow at the late stage, with a part of the energy spectrum close to
Kolmogorov’s five-third scaling (not shown).

In the evolution of vortex knots, the impulse I calculated from
the numerical integration over Q in Eq. (32) is invariant until
the knots collide with themselves at the periodic boundary at late
times (not shown). The finite energy dissipation rate in Fig. 3(b)
implies that the circulation T' of knotted vortex tubes generally
decays with time, so the conservation of I ~ T'S from Eq. (33) sug-
gests that the directed area S enclosed by the knots grows with time.
Thus with increasing the knot complexity [g in Eq. (27)] and the
corresponding increasing ¢ in Fig. 3(b), the expansion of vortex
knots becomes faster, which is consistent with the observation in
Fig. 4.

FIG. 3. Temporal evolution of (a) the total energy, (b) mean
dissipation rate, and (c) helicity in the DNS of three vortex
knots.
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TABLE II. Estimated occurrence times of the events of topological changes in the

evolution of vortex knots. The symbol “. . .” denotes the un-occurred event.

Trefoil Cinquefoil Septafoil
Event of topological change knot knot knot
Untying the knot 22 1.5 1.1
Breakdown of the bottom ring 4.9 21
Pinch off of the intermediate ring 2.5
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FIG. 4. Isosurfaces of |w| in the tem-
poral evolution of trefoil, cinquefoil, and
septafoil knots (from left to right columns)
att=1, 2,3, and 5 (from upper to bot-
tom rows). All the isosurfaces are color-
} coded by the helicity density. The isocon-
P e, tour values of |w]| are 35, 30, 25, and 17
{ att=1,2, 3, and 5, respectively.

V. CONCLUSIONS

We develop a feasible method for constructing knotted vor-
tex tubes with the writhe-dependent helicity and arbitrary com-
plexity. From the parametric equation of a given smooth and non-
degenerate closed curve, we construct a vector field based on a local
polar coordinate system along the curve. The vector magnitude,
determined by a given kernel function, decays with the distance
from the curve, and the vector direction is the same as the unit
tangent of the nearest point on the curve. We prove that this vec-
tor field is strictly divergence-free, so it can be used as the initial
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vorticity field of the vortex tube whose central axis is prescribed by
the curve.

Within the framework of Chui and Moffatt,'’ we derive the
explicit expression of the helicity of the constructed velocity—
vorticity field and find that this helicity is only proportional to writhe
of the curve, so we can isolate the effect of writhe in the investigation
of helicity.

Corresponding to the theoretical construction, we propose an
accurate and robust numerical algorithm for constructing knotted
vortex tubes in Cartesian coordinates. The relative numerical errors
in the helicity calculation of three typical torus vortex knots, includ-
ing trefoil, cinquefoil, and septafoil knots, are negligible (less than
10~°) on 512° uniform grid points in a periodic box.

We use the constructed velocity—vorticity fields as initial con-
ditions of DNS and calculate the evolution three vortex knots in
viscous incompressible flows. We find that all the initial knots are
untied after a short time. Then the helicity is almost conserved in the
evolution of the trefoil knot, which agrees with the former finding in
experiments.'® On the other hand, the decay of helicity in the evo-
lution of cinquefoil and septafoil knots is remarkable. This appears
to be related to complex topological changes of vortical structures,
such as the breakdown and coaxial interactions of pinch-off vortex
rings, other than the disentanglement of vortex knots.

Based on the proposed method for the numerical construction
of vortex knots, we expect to carry out the large-scale DNS" and
detailed, quantitative study’>"* of highly complex vortex knots in
future work, which can be useful to elucidate the conversion mecha-
nism between writhe and twist in the evolution of helicity. Moreover,
this work can be naturally extended to the study of magnetic flux
tubes.
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APPENDIX A: NUMERICAL ALGORITHM
FOR COMPUTING w(x)

First, we describe the idea of the algorithm for computing
Egs. (6) and (25). For a given x and a parametric curve C: ¢({), where
{ is not necessary to be an arc-length parameter, we seek a set for all
the stationary points of [x — ¢({)| as

S¢(x) = {¢l(x = () - T() = 0} (A1)

For each { € S, the corresponding pole distance in the plane S¢
normal to curve C is

pe =[x — ()] (A2)
Then Eq. (6) is calculated as
w(x)=T > f(p)T(0). (A3)
(eS¢ (x)

Note one x may correspond to multiple { in S;(x), but only one {
with pr < R, contributes to the summation in Eq. (A3) via the non-
trivial kernel function f (pp) defined in Eq. (7). Figure 5 illustrates

scitation.org/journal/phf

FIG. 5. The diagram for searching stationary points of [x — ¢(¢)| and calculating
w(x).

a simplified case of a vortex ring, for example. Here the given x
corresponds to two stationary points {; and {» of |x — ¢({)|, and {,
corresponds to f(p2) = 0 with py > Ry.. Then Eq. (A3) becomes w(x)
=Tf(p1)T({1). We remark that if R, in Eq. (6) is set to be too large,
e.g., Ry > Ry, the constructed vortex tube may self-intersect, which
corresponds to multiple non-zero terms in Eq. (A3), and we can still
compute a smooth vorticity field by Eq. (A3). However, Eq. (24) for
calculating the helicity may not be accurate, which will be discussed
in Appendix C.

Next we provide numerical details for calculating Eq. (A3) with
the discretization of C. As sketched in Fig. 6, for a given, closed para-
metric curve C: ¢({) with { € [0, L;), we divide C into N¢ segments
by N¢ dividing points

ci=c({i), i=1,2,...,Nc, (A4)
with {; = (i - 1)A{ and A{ = L;/N¢. If N¢ is sufficiently large, curve C

can be approximated as a fold line connecting all the dividing points.
Then the unit tangent on the line segment

li = {Ci +A(Ci+1 —Ci) |A € [0,1]}, i= 1,2,‘ . ‘,Nc, (A5)

can be expressed as

Ciy1 — Ci
T = —

= ,i=1,2,...,Ng, (A6)
|Ci+1 _Ci|

where subscripts N¢ + 1 and 1 are equivalent. Then at each dividing
point, we construct normal planes

Si={x|(x-¢) -Ti=0},i=1,2,...,N¢ (A7)
to divide the space in the proximity of curve C into N¢ subdomains

Qi={x|(x-ci) - Ti>0and (x — cis1) - Tix1 < 0}. (A8)
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P xog

T; = (¢j+1 — ¢j)/I€j+1 — ¢4

: _ G —e) T+ Glej —z) - Tj
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FIG. 6. The diagram for discretization of curve C and deter-
mination of the curve parameter and the minimum distance

G =

lej+1 — ¢4

between given x and C.

For a given x, we first use Eq. (A8) to determine the subdo-
mains Q; containing x. The subscripts of all the £2; containing x are
denoted by a set

I (x) = {jlx € Q;}. (A9)
For each j € I;(x), { in T({) can be approximated as

s Gl —g) T+ lgn —x) - T

{ (A10)
|1 = il
so the discretized point set of { for Eq. (A1) is collected by
Se(x) = {{jlj € I ()} (A1)
For each ¢, the distance |x — ¢({;)| is calculated by
p=VIx-gl - [(x-¢) T2 (A12)

Then the unit tangent in Eq. (A3) at { ; is approximated by the
second-order central difference scheme as

7o c(§+A0) - (G- AD)

= — . . (A13)
le(¢j +A0) —e(G - A
Finally, we approximate Eq. (A3) for the vorticity Eq. (6) as
wx) =T Y f(p)T; (A14)

jely ()

The procedure for the numerical construction of w(x) is sum-
marized in Algorithm 1. This algorithm is more accurate and effi-
cient than the simple traversal of all the dividing points of curve C
for seeking minimum |x — ¢;| through numerical experiments.

ALGORITHM 1. Calculation of w(x).

Input: x, ¢({), f(p), I, and N¢

Output: w(x)

Divide the space in the proximity of curve ¢({) into N¢ subdomains
by Eq. (A8)

Obtain I; by Eq. (A9) atx

Calculate Z,- by Eq. (A10) and pj by Eq. (A12) for each j €l
Calculate Tj by Eq. (A13) for given ¢({) at { = ij

Calculate w(x) by (A14) with computed Tj and given I' and f(p;)
Return w(x).

pi=le—cj? =[x —¢;) T;]?

APPENDIX B: DIFFERENTIAL GEOMETRY
OF A CLOSED PARAMETRIC CURVE

In Sec. 111 B, we introduce a continuous, differentiable, and
non-degenerate closed curve C in three-dimensional Euclidean
space R’ with the parametric equation x = ¢({), where ( is not nec-
essary to be an arc-length parameter. The formulas for calculating
geometric properties of C from ¢({) are listed below.

The Frenet-Serret frame can be expressed as

_ @)
o |CI((I)L,(()I () -"(0)
N = i 4 _ ¢ ¢ (o), (B
© l#&?*‘ﬂ&?r:(n Ol e’ O EY
c({)xc
PO ey enr
with ,
(0= aa 0= @
The curvature and torsion along the curve are
() - QO]
e ©P (B3)
T(() — [C (() xc (()] i ((),
" (€) > " (D)
with "
mn _ d’c
O =5 (B4)
The writhe and the normalized total torsion are calculated by
_ L [€'(€) x ()] - [e(D) — e(§)]
R (¢ R

T, = o fer (Ol Q1AL

In the numerical implementation of these formulas, curve C is
first divided into N¢ = 10* segments in terms of { (see Appendix A).
Then all the derivatives are calculated by the second-order central
difference scheme, and the integrals are calculated by the numerical
integration with the rectangle rule.

APPENDIX C: SELF-INTERSECTION OF THE KNOTTED
VORTEX TUBE

As mentioned in Appendix A, the self-intersection of the vor-
tex tube with finite thickness results in the inaccurate relationship
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in Eq. (24) between the helicity and the writhe of the vortex axis.
We illustrate this breakdown using a series of trefoil vortex knots for
which the vortex axis is determined by Eq. (27) with (p, q) = (2, 3)
and (Ry, r;) = (1, 0.1), and the thickness, i.e., the radius R, »~ 50, is
varied as o € [0.500, 4000] in the vorticity flux distribution Eq. (28).

Figure 7 depicts the isosurfaces of || for the trefoil knots with
a relatively large aspect ratio R/r; = 10 and three different 0. As
the thickness increases, the knotted tube becomes gradually self-
crossing, and finally merges into an unknotted vortex ring. Although
the tubes with varied o have the identical vortex axis, the topology
of the vortex lines therein and the distribution of the helicity density
are very different.

Figure 8 compares the helicities calculated by Egs. (10) and
(24) for the knotted vortex tubes with a range of thicknesses. As
o increases, H from Eq. (24) with the same W, and T is invari-
ant, whereas H from Eq. (10) decays as illustrated in Iig. 7. In the
extreme case in Iig. 7, the discrepancy on H becomes significant for
0 > 09. By contrast, for the three knots constructed in Sec. 111 B and
shown in Fig. 2, Eq. (24) is still accurate enough for o < 30¢. There-
fore, the present numerical algorithm can construct the smooth and
self-intersecting knotted vortex tubes, but their helicity cannot be
analyzed by Eq. (24).

50 — T T T
[ ——&—— Trefoil, r,= 0.1
______ —O6— Trefoil, r,= 0.5
—H&—— Cinquefoil, r,= 0.5
—A—— Septafoil, r,= 0.5

40

30

20

10

0 1 AN
0 0.2 0.4 0.6 0.8 1

6796 c

FIG. 8. The helicity of initial knotted vortex tubes with various thicknesses. Solid
lines: H calculated by Eq. (10); dashed lines: H calculated by Eq. (24).

ARTICLE scitation.org/journal/phf

FIG. 7. Isosurfaces of |w| of initial knot-
ted vortex tubes. The isosurfaces are
color-coded by the helicity density. Some
vortex lines are integrated on the sur-
faces. (a) o = 0.50¢ ~ 0.025, |w| = 20;
(b) 0 = 1.50¢ ~ 0.075, |w| = 40; and
(c) o =309 ~0.15, || = 18.
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