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A B S T R A C T

We present a novel numerical algorithm to perform nonlinear topology optimization on elastic thin shells. The
main component of our method is a differentiable thin-shell simulator based on discrete differential geometry
(DDG) discretization and the projected Newton method to solve geometrically nonlinear elasticity and its
derivatives on a triangle mesh. We build a density-based topology optimization algorithm, enhanced by a
density filter and a Heaviside projection scheme, to emerge and optimize topologically complex shell structures
on curved surfaces. We validate our approach using standard test cases for nonlinear topology optimization
and demonstrate the efficacy of our method by tackling highly nonlinear topology optimization problems by
producing complex and high-resolution shell structural designs under various load conditions.
1. Introduction

Thin-shell structures manifest outstanding stiffness-to-weight ratios
compared with their volumetric counterparts and therefore have played
an essential role in many weight-sensitive design applications such
as automobiles and airplanes. The design of thin shell structures has
received increasing attention in both computational design and topol-
ogy optimization communities over the past decades, exemplified by
the differentiable simulation and inverse design of various kinds of
functional shells, such as fuselage and Lotte tower [1], ankle-foot
orthosis [2], blunt cone shell [3] and etc. However, the state-of-the-art
works that optimize thin-shell topology with fine features concentrate
on shell topology optimization with linear elasticity. Devising methods
to tackle both topological complexities and geometric nonlinearities in
a unified framework remains challenging.

Researchers in mechanical engineering and scientific computing de-
veloped a host of algorithms and commercial software (e.g. Comsol [4])
to solve thin-shell mechanics. Originated from the Mixed Interpola-
tion of Tensorial Components (MITC) [5] approach, one of the well-
received models using triangular elements that facilitate shell analysis
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and design is MITC3 [6] and its nonlinear extension MITC3+ [7]. The
linear [8] and non-linear [9] geometric effects of MITC3 have been
well-studied.

On the other side, thin-shell simulation has also drawn extensive
attention from computational physics and computational geometry
researchers for decades, since the seminal work [10] on discretizing
and simulating elastic surfaces. A line of pioneering research has been
done to devise effective variational solvers and robust time integrators
to simulate shell dynamics on a triangle mesh [11–14]. Along this line,
researchers started to explore solvers based on Discrete Differential
Geometry (DDG) [15] and intrinsic shell models [16], where DDG
developed discrete versions of fundamental concepts from differential
geometry, such as curvature, tangents, and gradients, that can be
applied to discrete geometric structures like meshes, graphs, and point
clouds. Our shell simulator follows this line of research by discretizing
the membrane and bending energy terms on a triangle mesh and solving
its equilibrium by minimizing the energy.
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Volumetric topology optimization has received tremendous suc-
cess over the past decades [17–19]. Combined with additional geo-
metric constraints, volumetric approaches have been used to design
manifold-coated structures with enclosed shells [20–23], thin sheet
metal structures tailored for the deep drawing manufacturing pro-
cess [24], generalized 3D non-manifold thin-walled structures [25],
and sparse lattice structures [26,27]. They have also been employed
to produce thin features [28] or cellular structures [29] on a planar
domain. However, none of these works leverage the shell model’s
geometric feature to reduce computational cost.

Compared with the volumetric topology optimization counterpart,
topology optimization on shells or other codimensional geometries has
remained less explored. Early work [30] started by optimizing thickness
as a varying field. Ansola et al. [31] introduced a parametric method
to co-optimize the shell shape and topology with microstructure. A
discrete material optimization framework [32] later was proposed to
optimize material on laminated shells, followed by extensions [33,34].
There is some more recent progress made using different topology
representations. Ho and Kim [35] co-optimized the shape and topology
of a linear thin shell using the level-set method. Other examples include
NURBS [36] and Moving Morphable Components (MMC) [3], series
expansion [37], and multi-layer representations [38] to obtain shell
topology optimization results. We want also to highlight the work
done by [1], which optimized shells with millions of elements on a
supercomputer. Their approach produced the state-of-the-art resolution
for thin-shell optimization, although with their focus on optimizing
linear shells.

Despite the progress in optimizing shell structures using differ-
ent topological representations, producing high-quality topology op-
timization designs on a geometrically nonlinear thin shell remains
challenging, due to multiple interleaving difficulties in practice to
simultaneously tackle the shell’s geometric nonlinearity and topological
complexities to probe novel shell structural designs. In particular, due
to the coupling between the shell’s bending and stretching mechanics,
obtaining clear, binary structures is not a trivial task. The local minima
in a nonlinear shell could exhibit features with creases, articulated
joints, or a mix of surfaces and beams, which are drastically different in
terms of both optimization convergence and mechanical performance
from their linear and volumetric counterparts.

Several methods have been investigated to solve the convergence
problem with non-linear topology optimization including using the re-
laxed convergence criterion [39], interpolation with linear energy [40],
linear to nonlinear two-step process [41], element removal and rein-
troduction [42,43], and the co-rotational scheme [44]. However, these
methods either add on excess computational costs or require signifi-
cant implementation efforts. Similarly, our method solves the conver-
gence issue of the thin-shell simulation within the SIMP framework by
the projected Newton’s method but with minimal modification of the
nonlinear structural optimization framework to keep their simulation
performance.

On the other hand, a multitude of recent work in computational
design and fabrication communities has been devoted to the inverse
design of functional thin shells. These works can be categorized ac-
cording to their physical design variables and optimization focus, in-
cluding the shape-material co-optimization [45], magnetoelasticity co-
optimization [46], parametric shapes [47], shell reinforcement [48,49],
and synthesized microstructures [50–52], to name just a few. While
they are proposed to solve different problems of inverse design, none
of them has studied the topology optimization on thin shells.

We present a novel topology optimization algorithm to facilitate
nonlinear structural design on thin shells. We build our approach upon
state-of-the-art nonlinear DDG shell simulators stemming from previous
work in computational physics and geometry [15,16] and extend the
framework to support differentiation calculation by adopting the pro-
jected Newton method. We further incorporate this differentiable solver
2

into a topology optimization pipeline by equipping density representa-
tions, binary filters, and large-scale optimizers in a unified framework.
Our method provides a practical tool that enables the topological design
of complex and nonlinear thin-shell structures, which, to the best
of our knowledge, produces state-of-the-art nonlinear shell topology
optimization results in terms of their design complexity.

The rest of the paper is organized as follows. In Section 2, we intro-
duce the thin-shell model that we adopt and the quasi-static simulation
algorithm using the projected Newton method. We then formulate the
topology optimization problem, derive the sensitivities with the given
thin-shell model and present the optimization algorithm in Section 3.
In Section 4, we validate our method by several simple cases and
then demonstrate the efficacy of our method with more complicated
boundary conditions, before conclusions are drawn in Section 5.

2. Thin-shell model

2.1. Continuous model

Based on the Kirchhoff–Love assumption, we model a thin shell with
a mid-surface 𝒇 ∶ 𝛺 → R3 extended by a constant thickness ℎ. Here 𝒇
is a mapping from the two-dimensional parameter space 𝛺 to a three-
dimensional space R3. We represent the shell volume in terms of the
shell’s mid-surface 𝒇 as 𝒙(𝑥, 𝑦, 𝑧) = 𝒇 (𝑥, 𝑦)+𝑧𝒏(𝑥, 𝑦), where 𝒏 is the mid-
surface normal, 𝑥 and 𝑦 are local coordinates in 𝛺, 𝒙 is the coordinate
in R3, and 𝑧 ∈ [−ℎ∕2, ℎ∕2] is the normal extension. The first and the
second fundamental forms on 𝒇 are then calculated as
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Following [15,16], we adopt the St. Venant–Kirchhoff model and
define the elastic energy density using the first and second fundamental
forms:

𝑒 = ℎ
4
‖

‖

‖
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‖𝑀

√

det Ī + ℎ3

12
‖

‖

‖

Ī−1(I − Ī)‖‖
‖𝑀

√

det Ī. (2)

Here, the bar notation denotes variables in the rest shape. The first
term in Eq. (2) accounts for the stretching energy, and the second term
represents the bending energy. We choose the material norm ‖ ⋅ ‖𝑀 by
following the formula used in [15] as:

‖𝐴‖𝑀 = 𝐸
1 − 𝜈2

[

𝜈Tr(𝐴)2 + (1 − 𝜈)Tr(𝐴2)
]

, (3)

where 𝐴 is a 2 × 2 matrix, 𝐸 is the Young’s modulus and 𝜈 is the
Poisson’s ratio.

2.2. Differential geometry discretization

We discretize the elastic energy on
a triangle mesh (𝑉 ,𝐸, 𝐹 ), where 𝑉 ,
𝐸, and 𝐹 are the sets of vertices,
edges, and faces, respectively. We as-
sume that the physical quantities and
the rest counterparts are constant over
each face of the triangle mesh. Follow-
ing [16] adopting the use of DDG, for
a triangle with vertices 𝑣𝑖, 𝑣𝑗 , 𝑣𝑘, we
discretize I(𝑥, 𝑦) and I(𝑥, 𝑦) into

I𝑖𝑗𝑘 =
[

‖𝑣𝑗 − 𝑣𝑖‖2 (𝑣𝑗 − 𝑣𝑖) ⋅ (𝑣𝑘 − 𝑣𝑖)
(𝑣𝑗 − 𝑣𝑖) ⋅ (𝑣𝑘 − 𝑣𝑖) ‖𝑣𝑘 − 𝑣𝑖‖2

]

, (4)

and

I𝑖𝑗𝑘 = 1
2

[

(𝑛𝑗 − 𝑛𝑖) ⋅ (𝑣𝑗 − 𝑣𝑖) (𝑛𝑗 − 𝑛𝑖) ⋅ (𝑣𝑘 − 𝑣𝑖)
(𝑣𝑗 − 𝑣𝑖) ⋅ (𝑛𝑘 − 𝑛𝑖) (𝑣𝑘 − 𝑣𝑖) ⋅ (𝑛𝑘 − 𝑛𝑖)

]

, (5)

where (𝑛𝑖, 𝑛𝑗 , 𝑛𝑘) are the mid-edge normal. We can also compute the rest
first and second fundamental forms analogously for a given rest con-
figuration (�̄�𝑖, �̄�𝑗 , �̄�𝑘) and (�̄�𝑖, �̄�𝑗 , �̄�𝑘). Then it is straightforward to write
down a discrete elastic energy density for each triangle by substituting
(4) and (5) into (2).
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2.3. Quasi-static simulation

We devise a quasi-static solver to minimize the elastic energy de-
fined in Eq. (2) with given boundary conditions and external loads.
Solving the quasi-static system using the implicit Euler scheme amounts
minimizing the total potential energy 𝑒′ = 𝑒−𝒇 𝑒𝑥𝑡 ⋅𝒙 on a discrete shell,
which is nonlinear w.r.t. the vertex positions. We devised an iterative
solver based on the Newton–Raphson method with a backtracing line
search to find the solution with more numerical stability. As shown
in Algorithm 1, in each iteration we first compute the total potential
energy and the corresponding gradients and Hessian. Since the energy,
derivatives, and Hessian are calculated on each triangle separately,
we can easily parallelize the computation using multi-threads on the
CPU to reach high computational efficiency, using OpenMP [53]. The
system’s Hessian matrix needs to be positive semi-definite (PSD) to
ensure the algorithm searches in an energy-descending direction. We
achieve this by performing eigendecomposition on the Hessian matrix
of each triangle and clamping the negative eigenvalues to zero (similar
ideas can be seen in [54]). After obtaining the symmetric PSD global
hessian matrix and gradients, we solve the linear system (Line 5)
using the CHOLMOD [55] library. We check for the convergence of
the simulation based on the maximum displacement norm and the
tolerance is set to be 1e − 4 of the typical edge length (Line 6) unless
indicated otherwise. We then perform the backtracking line search to
check if the potential energy after the vertices update is smaller than
the potential energy at the starting point to achieve better stability.
If the potential energy does not decrease, we half the step size and
continue the process.

Algorithm 1 Quasi-static Thin Shell Simulation
1: for 𝑖 ← 1 to max_iterations do
2: 𝑒′ ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝒙)
3: 𝑯 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡_𝑃𝑆𝐷( 𝜕

2𝑒
𝜕𝒙2 )

4: 𝒃 = 𝒇𝑒𝑥𝑡 −
𝜕𝑒
𝜕𝒙

5: 𝜟𝒙 = 𝐿𝑖𝑛𝑒𝑎𝑟𝑆𝑜𝑙𝑣𝑒(𝑯 , 𝒃)
6: if ‖𝛥𝒙‖∞ < 𝑡𝑜𝑙 then
7: 𝐛𝐫𝐞𝐚𝐤
8: end if
9: 𝑒′𝑡𝑚𝑝 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝒙 + 𝛥𝒙)

10: 𝛼 = 1
11: while 𝑒′𝑡𝑚𝑝 ≥ 𝑒′ do
12: 𝑒′𝑡𝑚𝑝 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝒙 + 𝛼𝛥𝒙)
13: 𝛼∕ = 2
14: end while
15: 𝑒′ = 𝑒′ ← 𝑡𝑚𝑝
16: 𝒙 ← 𝒙 + 𝛼𝛥𝒙
17: end for

3. Topology optimization

3.1. Problem formulation

Design variables. We define a density value 𝜌 ∈ [0, 1] on each trian-
gle. Following the modified Solid Isotropic Material with Penalization
(SIMP) method [17], Young’s modulus of each triangle is calculated as
a function of input density with a constant penalizing power 𝑝 as:

(𝝆) = 𝐸min + 𝝆𝑝(𝐸0 − 𝐸min), (6)

here 𝐸min and 𝐸0 are constants specifying the minimum and maxi-
um Young’s modulus, and 𝝆 is a scalar field discretizing the density
istribution over triangles. If filters are further applied on 𝝆, Eq. (6)
ill take the projected density as input. We choose 𝐸min = 1e − 6𝐸0,
0 specified in the Table 1 and 𝑝 varies according to description in
ection 3.3.
3

Optimization problem. Given a domain 𝛺, we formulate the topology
optimization problem as minimizing the structural compliance 𝑒(𝝆, 𝒖)
y optimizing 𝝆, when the force equilibrium of internal force −𝜕𝑒∕𝜕𝒖

and external force 𝒇 𝑒𝑥𝑡 is reached:

minimize𝝆 𝑒(𝝆, 𝒖), subject to
⎧

⎪

⎨

⎪

⎩

𝑉 (𝝆)
𝑉 (𝛺) ≤ 𝑓𝑣,

𝑫𝒖 = 𝟎,
𝜕𝑒
𝜕𝒖 = 𝒇 𝑒𝑥𝑡,

(7)

where 𝒖 is the displacement, 𝑉 (𝝆) is the material volume, 𝑉 (𝛺) is the
olume of the design domain, 𝑓𝑣 is the input volume fraction constraint,

𝑫 is a selection matrix assigning Dirichlet boundary conditions to mesh
nodes.

Density filters. We devised a mesh-independent density filter and a
projection filter to coerce the density field towards forming a clear
structure. The combination of these two steps also avoids checkerboard
artifacts. The first pass we employed is to smooth the density field.
Motivated by [56], we calculate a weighted average density based on
triangles within a certain range. For a given triangle 𝑘, our filter is
calculated as:

�̃�𝑘 =

∑

𝑖∈𝑁𝑘
𝑤𝑘𝑖𝜑𝑖𝑣𝑖

∑

𝑖∈𝑁𝑘
𝑤𝑘𝑖𝑣𝑖

, (8)

𝑤𝑘𝑖 = 𝑟 − |𝒙𝑘 − 𝒙𝑖|, (9)

which blends the densities within a spherical neighborhood specified
by the radius 𝑟. Here 𝑁𝑘 is the 𝑘th element of the neighbor list within
𝑟, 𝑣𝑖 is the triangle area, and 𝜑𝑖 is the triangle density. For the second
pass, we apply a projection filter to obtain a binary result of the
final density field on the triangle mesh. Our scheme was motivated
by the projection approach used in volumetric topology optimizations
(e.g. [57]) to obtain a clear structure. The projection filter takes �̃� as
the input from the previous filter and calculates the projected density
�̂� as:

̂𝑘 =
tanh(𝛾𝜂) + tanh(𝛾(�̃�𝑘 − 𝜂))
tanh(𝛾𝜂) + tanh(𝛾(1 − 𝜂))

, (10)

where 𝜂 = 0.5 is the density threshold and 𝛾 controls how strong the
projection is. When 𝛾 = 1, there is no projection. In our implementation,
we use 𝛾 ∈ [1, 16]. Last, we set the projected density value �̂� as the input
of Eq. (6) to update Young’s modulus of each triangle.

Algorithm 2 Thin Shell Topology Optimization
1: 𝑝 ← 1, 𝛾 ← 1, 𝜌𝑒 ← 𝑓𝑣∀𝑒 ∈ 𝛺
2: for 𝑖 ← 1 to max_iterations do
3: Increment 𝑝 and 𝛾 with the continuation scheme
4: Update 𝒙 according to Algorithm 1
5: Calculate 𝑒 using Equation (2)
6: Calculate 𝑉 (𝜌)
7: Update 𝜕𝑒

𝜕𝜌𝑖
and 𝜕𝑉 (𝜌)

𝜕𝜌𝑖
using Equation (18) and (19)

8: 𝜌𝑖+1 ← 𝑚𝑚𝑎_𝑢𝑝𝑑𝑎𝑡𝑒(𝜌𝑖, 𝜕
𝑒
𝜌𝑖
, 𝑉 (𝜌), 𝜕 𝑉 (𝜌)

𝜌𝑖
, 𝑚𝑜𝑣𝑒_𝑙𝑖𝑚𝑖𝑡)

9: 𝛥𝜌 ← 𝜌𝑖+1 − 𝜌𝑖
10: if ‖𝛥𝜌‖∞ < 𝑡𝑜𝑙 then ⊳ 𝑡𝑜𝑙 = 1e−4
11: break
12: end if
13: Update �̂� using Equation (8) and (10)
14: end for

3.2. Sensitivity

Since both the displacements of vertices 𝒖 and the density field 𝝆
influence the elastic energy, we have
𝜕𝑒(𝒖,𝝆)

= 𝒇 . (11)

𝜕𝒖 𝑒𝑥𝑡
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Table 1
Statistics for all examples.

Example Design
DoF

Sim
DoF

Computation time (ms/iter) Newton’s
iterations

ℎ(𝑚) 𝐸0(𝑃𝑎) 𝜈 𝑓𝑣

Forward Gradient Other

Long beam 160𝑘 243𝑘 – – – – 0.001 1e9 0.35 0.2
Bending plane 16𝑘 25𝑘 3091 1188 14.377 1200 0.01 1e9 0.3 0.5
Pulled cylinder 103𝑘 156𝑘 36 411 4695 11.271 2616 0.001 1e9 0.3 0.35
Paraboloid shell 205𝑘 309𝑘 4930 3098 68.118 2172 0.01 1e9 0.5 0.5
Odonata wing 5 degree 683𝑘 1, 029𝑘 41528 22339 509 585 0.01 1e9 0.3 0.3
Odonata wing down 683𝑘 1, 029𝑘 76961 21877 549 937 0.01 1e9 0.3 0.3
Hyperboloid cylinder (concave) 670𝑘 1, 006𝑘 38581 24465 470.164 501 0.001 1e5 0.3 0.5
Hyperboloid cylinder (convex) 670𝑘 1, 006𝑘 35310 24895 512.461 500 0.002 1e5 0.3 0.5
Bunny 139𝑘 209𝑘 6787 4416 102.90 500 0.02 1e9 0.3 0.35
Fig. 1. Optimized long beam with geometrically nonlinear elements, displacements are
incorporated in the rendering. The boundary condition is illustrated using black marks
on the top figure. Forces from top to bottom: 0.01 N, 0.1 N, 1 N, and 100 N. The final
objectives of the structures are 4.18e−9, 4.27e−07, 4.96e−05, and 0.560 respectively.

By taking the partial derivative of 𝝆 and right multiplying [𝜕2𝑒(𝒖,𝝆)
∕𝜕𝒖2]−1 for the Eq. (11), we derive the partial derivative of 𝒖 with
respect to 𝝆 as follows

𝜕𝒖
𝜕𝝆

= −
𝜕2𝑒(𝒖,𝝆)
𝜕𝝆𝜕𝒖

[

𝜕2𝑒(𝒖,𝝆)
𝜕𝒖2

]−1

. (12)

Substituting (12) into the total derivative of objective 𝑒 w.r.t. 𝝆

d𝑒(𝒖,𝝆)
d𝝆 =

𝜕𝑒(𝒖,𝝆)
𝜕𝝆

+ 𝜕𝒖
𝜕𝝆

𝜕𝑒(𝒖,𝝆)
𝜕𝒖

(13)

yields

d𝑒(𝒖,𝝆)
d𝝆 =

𝜕𝑒(𝒖,𝝆)
𝜕𝝆

−
𝜕2𝑒(𝒖,𝝆)
𝜕𝝆𝜕𝒖

[

𝜕2𝑒(𝒖,𝝆)
𝜕𝒖2

]−1 𝜕𝑒(𝒖,𝝆)
𝜕𝒖

(14)

Notice that we do not calculate the inverse of the matrix directly.
Instead, we convert

[

𝜕2𝑒(𝒖,𝝆)
𝜕𝒖2

]−1 𝜕𝑒(𝒖,𝝆)
𝜕𝒖 into solving the linear system

and solve it with the CHOLMOD solver as what we did in the forward
simulation. Using (6), (14) can be simplified as

𝜕𝑒 = 𝑝𝜌𝑝−1𝑒𝑘. (15)
4

𝜕𝜌𝑘 𝑘
From (10), we have

𝜕�̂�𝑘
𝜕�̃�𝑘

= 𝛾
1 − tanh(𝛾(�̃�𝑘 − 𝜂))2

tanh(𝛾𝜂) + tanh(𝛾(1 − 𝜂))
(16)

Here, 𝜕�̄�𝑘∕𝜕𝜑𝑗 is calculated using (8) as

𝜕𝜌𝑘
𝜕𝜑𝑗

=
𝑤𝑘𝑖𝑣𝑗

∑

𝑖∈𝑁𝑒
𝑤𝑘𝑖𝑣𝑖

, 𝑗 ∈ 𝑁𝑒 (17)

Following the chain rule, the derivative of objective 𝑒 w.r.t design
variables 𝝋 is

𝜕𝑒
𝜕𝜑𝑗

= d𝑒
d�̂�𝑘

𝜕�̂�𝑘
𝜕�̃�𝑘

𝜕�̃�𝑘
𝜕𝜑𝑗

. (18)

The derivative of volume 𝑉 (𝝆𝑘) w.r.t. 𝝋𝑗 is simply the volume of
each element times 𝜕�̂�𝑘

𝜕�̄�𝑘
and 𝜕�̃�𝑘

𝜕𝜑𝑗
, following the chain rule as

𝜕𝑉 (𝝆)
𝜕𝜑𝑗

= 𝑉 (�̂�𝑘)
𝜕�̂�𝑘
𝜕�̃�𝑘

𝜕�̃�𝑘
𝜕𝜑𝑗

. (19)

3.3. Optimization

Given the sensitivities for the objective and constraints, we use
the method of moving asymptotes (MMA) [58,59] to optimize the
densities on triangles to minimize the shell’s elastic compliance. Fol-
lowing Algorithm 2, we first initialize the penalization power 𝑝 and the
density projection parameter 𝛾 to 1. In each iteration, we then run the
quasi-static thin-shell simulation according to Algorithm 1 to reach a
balance between internal and external forces under the current density
distribution. On Line 3, to achieve better density convergence we use
the continuation strategies as [60] by increasing 𝑝 by 0.05 every other
iteration when 𝑝 is smaller than 2 and once every five iterations when 𝑝
is smaller than 3. Similarly, we double 𝛾 once every 10 iterations after
200 iterations until it reaches 16. Then we calculate the sensitivities
for the objective and constraint functions according to Eqs. (18) and
(19) to update the optimization variables. Also, we do not perform a
direct inversion on the global Hessian matrix but solve for 𝜕𝒖

𝜕𝝆 with the
corresponding linear system by Eq. (12). The Hessian is calculated the
same as what we do in the quasi-static simulation except that we do
not project the Hessian to PSD here and switch to a direct sparse LU
solver when the CHOLMOD solver fails to solve the system, in order to
achieve more accurate gradients while keeping the solving efficiency
at the same time. We update 𝝆 with the MMA optimizer and check for
convergence. The 𝑚𝑜𝑣𝑒_𝑙𝑖𝑚𝑖𝑡 on Line 8 indicates how much the variable
can change, which we use 0.1 in all experiments.

4. Numerical results

All examples were run on a single desktop with an AMD Ryzen
7 3800X 8-Core 3.90 GHz processor and 64 GB installed RAM. The
experiment parameters and statistics are summarized in Table 1. Use
the compliance convergence criteria |𝑒𝑡+2+𝑒𝑡+3−𝑒𝑡−𝑒𝑡+1| < 1% (subscript
𝑒𝑡+𝑒𝑡+1
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Fig. 2. The convergence plots for the long beam examples.

Fig. 3. Top: the long beam structure produced by using linear MITC elements in
COMSOL with ‖𝒇 𝑒𝑥𝑡‖ = 100 N. Bottom: the deformed structure simulated using our
geometrically nonlinear simulator with an objective equal to 3.59.

denotes iteration), all our examples converge within 125 iterations. The
convergence plots for all examples also demonstrate good convergence.
We show the results at iteration 250 after the designs become the most
binary.

4.1. Validation

First, we validate the correctness of our method under different
loading conditions with three examples and compared the results with
other standard methods.

Long beam: validation for in-plane force. As shown in Fig. 1, we demon-
strate that our method can produce optimization results under in-plane
point force loads with different magnitudes to explore the material’s
geometric non-linearity. In a 4 m × 0.5 m domain with 0.001 m
thickness, we set up a 160𝑘 triangle mesh based on an 800 × 100
grid with left and right nodes fixed. A point force pointing downward
is added on the bottom middle node of the plane. The convergence
plot of this example is shown accordingly in Fig. 2, from which we
can tell that all optimizations converge within 100 iterations. The
initial rise in objective was due to the use of the continuation of the
parameter scheme for 𝑝. As the force becomes larger, there are fewer
detailed structures formed and buckling happens in the middle of the
beam when ‖𝒇 𝑒𝑥𝑡‖ = 100 N. As the force becomes larger, the strain
enters the geometrically non-linear region and the structure becomes
more degenerated and only supports well for the specific load case.
The transition of structures from thin patterns to thick beams under
different in-plane loads is consistent with the beam structures obtained
by other standard nonlinear topology optimization algorithms using
volumetric elements (e.g. [61]).

To further validate the correctness of our in-plane model, we further
compared the results with the linear MITC3 elements in COMSOL. As
5

Fig. 4. Flat plane is loaded with the downward forces on the rightmost nodes. Left:
highly bent plane with 100 N force load. Right: the optimized structure.

Fig. 5. The convergence plot for the bending plane example.

Fig. 6. Cylinder with top and bottom nodes fixed and pulling force (100 N) distributed
on two sides. Left: the initial deformation before topology optimization with boundary
condition marked in black. Right: the optimized structure.

Fig. 7. The convergence plot for the pulled cylinder example.

shown in Fig. 3, the long rectangular domain is similarly fixed on
both sides and a 100 N external force load is applied on the bottom
middle node. The optimized structure is similar to the structure that
we optimized using a small force load equal to 0.01 N. This structure
produces a much larger objective (3.59) than that of our structure
(0.560) when both are simulated with geometrically nonlinear elements
(see Fig. 5).
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Fig. 8. Paraboloid shell. Optimization iteration from left to right, top to bottom: 0,
20, 100, 250.

Fig. 9. The convergence plot of the paraboloid shell example.

Fig. 10. Left is the concave hyperboloid cylinder and right is the convex hyperboloid
cylinder. The inset picture indicates the boundary condition.

Bending plane: validation for out-of-plane force. In this example, we
demonstrate that our method can optimize structures with purely out-
of-plane forces, see Fig. 4. We set a triangulated 128 × 64 plane fix
the left ten percent of the plane nodes and add 100 N on the rightmost
nodes with the density 𝝆 of the rightmost faces fixed at 1. Since the
displacement is very large for this example, we decrease the tolerance
for simulation tolerance to 0.1 of the typical edge length for faster
convergence. Before the structural optimization, the plane with evenly
6

Fig. 11. Left: the convergence plot of the concave hyperboloid cylinder. Right: the
convergence plot of the convex hyperboloid cylinder.

Fig. 12. Optimization intermediate states of the Stanford bunny at iteration 1, 20, 100
and 250. The boundary condition is indicated in the first picture, where the bottom
nodes of the bunny are fixed and loads are applied on the head and the back.

Fig. 13. The convergence plot of the bunny example.

distributed density is bent downwards. As optimization proceeds, den-
sities are mostly gathered towards the left side of the structures and
only minimum densities are allocated to form a connection with the
force loads. Therefore, as shown in the convergence plot Fig. 5, the
bending energy is largely reduced and a crease traverses through the
middle of the optimization domain.

Cylinder pulled from two sides: validation for large deformation. With the
top and bottom nodes fixed, we add two loads of vertically distributed
forces on the sides concentrating on the middle 0.5 of the cylinder
height. The cylinder is 3 m tall with a radius equal to 1 m. As demon-
strated in Fig. 6, there is subtle deformation can be observed initially,
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Fig. 14. Odonata wing optimization results with two different loading cases.
where the two sides are pulled by forces. At the end of the optimization,
we can see two clear ‘‘X’’ shapes forming around the applied force
while connecting the top and bottom fixed nodes. Notice that there is
a vertical gap formed in each of the x shapes, which acts as a hinge so
that the overall bending energy can be minimized, see plot in Fig. 7.

4.2. Examples

Next, we demonstrate that our method can generate intricate struc-
tures on complex geometries under various loading conditions.

Paraboloid shell. We set up a 215𝑘 triangle mesh with a paraboloid
shape with 𝑦 = −0.5((𝑥 − 0.5)2 + (𝑧 − 0.5)2), where 𝑥, 𝑧 ∈ [0, 1]. The four
corners of the mesh are fixed and a downward point load of 0.0001 N
is added in the center of the mesh. As shown in Fig. 8, our method
first distributes the density mostly in the middle and around the four
edges and then generates thin beams connecting the middle part with
the four corners. The convergence plot is shown as Fig. 9, from which
we can observe the increase of objective before iteration 50 due to the
effect of the continuation of the parameter scheme.

Hyperboloid cylinder. By fixing the bottom of the hyperboloid cylinder
nodes and adding a distributed load of 0.0001 N on the top, we optimize
the density distribution on concave and convex hyperboloid cylinders
which are both 3 m tall, see Fig. 10. The concave cylinder produces
a network consisting of connecting rhombi while the convex cylinder
produces a network consisting of rectangles. The optimizer automati-
cally generates the solid ring on the top of the cylinders to maximize
the stiffness around the force load. These two patterns match the design
of durable stools in the real world. The convergence plots are given in
11.

Stanford bunny. Our method also works on more complex geometries
like the Stanford bunny, shown in Fig. 12 with the convergence plot in
Fig. 13. We fixed the bottom nodes of the bunny and applied distributed
loads of 0.1 N on the head and the back of the bunny. Concentrated
density formed around the head and the back area where the force
loads are applied, while grid-like structures span around the chest and
buttock area.
7

Fig. 15. Left: the convergence plot of the Odonata wing example with pulling force on
the bottom right boundary. Right: the convergence plot of the Odonata wing example
with downward pushing forces on the entire domain.

Odonata wing. In this example, we show that our method can produce
detailed vein-like structures on an Odonata wing with out-of-plane
forces. In Fig. 14 with convergence plots in Fig. 15, the design domain
is a shell shaped like the Odonata wing with the middle nodes lifted
a small amount (as illustrated by the inset of the bottom figure). The
leftmost nodes on the boundary are fixed in both cases which is similar
to how wings are attached on odonata. In the top figure, the distributed
loads are applied on the right bottom boundary nodes along the normal
direction with 5 degrees of out-of-plane component into the image
plane. Long beams with high densities are formed in the middle and
bottom of the plane, traversing horizontally and tapering towards the
right end. In the bottom figure, distributed forces pointing into the
image plane with a linear increment from left to right are applied
to every node. We observe that a main beam travels horizontally in
the middle and it branches out like fractals over the entire domain.
Although in real life, the force load applied to the Odonata wing is
constantly changing, here we provide the optimized structure under
two arbitrary loads with out-of-plane force components to obtain some
insights.

5. Conclusion

This paper presents a nonlinear topology optimization algorithm
on thin shells to obtain complex structures. The algorithm embodied
a differentiable, nonlinear thin shell solver to carry out sensitivity
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analysis and density evolution on a shell mesh. A density filter was
designed to coerce binary structures. We validated our approach on
different test scenarios of optimizing nonlinear structures, exploring the
bending-stretching tradeoff, and large nonlinear deformation, as well as
generating high-resolution shell structures.

Currently, our approach has several aspects of limitations. First, our
current thin-shell solver cannot handle element inversion, hindering it
from solving shells with a large in-plane compression. Strain-limiting
methods or invertible elastic solvers (e.g., [54]) will be considered to
enhance the robustness of the current method. Second, our method
does not optimize shape. Due to the algorithmic complexities of up-
dating mesh elements, it is currently challenging to co-optimize mesh
geometry and topology in a unified framework. It will be interest-
ing to further explore thin-shell solvers that can work on other shell
representations such as particles and implicit surfaces to explore the
possibilities of shape-density co-optimization. Third, devising high-
performance multigrid shell solvers is also an immediate next step to
facilitate super-resolution shell optimization. Last, our current method
does not support nonmanifold geometries, which prevents the tackling
of many interesting shell structures such as foams and bubble clusters.
One of our future directions is to explore the nonmanifold shell solver
and its topology optimization.
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