
Journal of Computational Physics 437 (2021) 110325
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Symplectic neural networks in Taylor series form for

Hamiltonian systems

Yunjin Tong a,1, Shiying Xiong a,∗,1, Xingzhe He a,b, Guanghan Pan a,c, Bo Zhu a

a Dartmouth College, Hanover, NH 03755, United States
b Rutgers University, New Brunswick, NJ 08854, United States
c Middlebury College, Middlebury, VT 05753, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 2 April 2021

Keywords:
Machine learning
Hamiltonian system
Physics-informed neural network
Taylor series expansion

We propose an effective and light-weight learning algorithm, Symplectic Taylor Neural
Networks (Taylor-nets), to conduct continuous, long-term predictions of a complex Hamil-
tonian dynamic system based on sparse, short-term observations. At the heart of our
algorithm is a novel neural network architecture consisting of two sub-networks. Both are
embedded with terms in the form of Taylor series expansion designed with symmetric
structure. The key mechanism underpinning our infrastructure is the strong expressiveness
and special symmetric property of the Taylor series expansion, which naturally accommo-
date the numerical fitting process of the gradients of the Hamiltonian with respect to the
generalized coordinates as well as preserve its symplectic structure. We further incorporate
a fourth-order symplectic integrator in conjunction with neural ODEs’ framework into our
Taylor-net architecture to learn the continuous-time evolution of the target systems while
simultaneously preserving their symplectic structures. We demonstrated the efficacy of our
Taylor-net in predicting a broad spectrum of Hamiltonian dynamic systems, including the
pendulum, the Lotka–Volterra, the Kepler, and the Hénon–Heiles systems. Our model ex-
hibits unique computational merits by outperforming previous methods to a great extent
regarding the prediction accuracy, the convergence rate, and the robustness despite using
extremely small training data with a short training period (6000 times shorter than the
predicting period), small sample sizes, and no intermediate data to train the networks.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Hamiltonian mechanics, first formulated by William Rowan Hamilton in 1834 [1], is one of the most fundamental math-
ematical tools for analyzing the long-term behavior of complex physical systems studied over the past centuries [2,3].
Hamiltonian systems are ubiquitous in nature, exhibiting total energy with various forms, as seen in plasma physics [4],
electromagnetic physics [5], fluid mechanics [6], and celestial mechanics [7]. Mathematically, Hamiltonian dynamics de-
scribe a physical system by a set of canonical coordinates, i.e., generalized positions and generalized momentum, and uses
the conserved form of the symplectic gradient to drive the temporal evolution of these canonical coordinates [8]. However,

* Corresponding author.
E-mail address: shiying.xiong@dartmouth.edu (S. Xiong).

1 Co-first author.
https://doi.org/10.1016/j.jcp.2021.110325
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110325
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110325&domain=pdf
mailto:shiying.xiong@dartmouth.edu
https://doi.org/10.1016/j.jcp.2021.110325

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
for a dynamic system governed by some unknown mechanics, it is challenging to identify the Hamiltonian quantity and its
corresponding symplectic gradients by directly observing the system’s state, especially when such observation is partial and
the sample data is sparse [9–11].

The rapid advent of machine learning (ML) techniques opens up new possibilities to solve the identification problems of
physical systems by statistically exploring their underlying structures. On the one hand, data-driven approaches have proven
their efficacy in uncovering the underlying governing equations of a variety of physical systems, encompassing applications
in fluid mechanics [12], wave physics [13], quantum physics [14], thermodynamics [15], and material science [16]. On the
other hand, various ML methods have been proposed to boost the numerical simulation of complex dynamical systems by
incorporating learning paradigms into simulation infrastructures, e.g., ordinary differential equations [17], linear or nonlin-
ear partial differential equations [18,17,19–22], high-dimensional partial differential equations [23], inverse problems [24],
space-fractional differential equations [25], systems with noisy multi-fidelity data [26], and pseudo-differential operators
[27,28], to name a few. More recently, many lines of research have tried to incorporate physical priors into the learning
framework, instead of letting the learning algorithm start from scratch, e.g., embedding the notion of an incompressible
fluid [29,30], the Galilean invariance [31], a quasistatic physics simulation [32], and the invariant quantities in Lagrangian
systems [33] and Hamiltonian systems [15,34–38].

There are two critical aspects in learning and predicting the dynamics of a Hamiltonian system. The first key point
is to learn the continuous dynamic time evolution. It is impossible to control the growth of approximation error and
monitor the level of error by simply using neural networks to learn the dynamics of a system and integrating using
traditional integrators, e.g., Euler [39], Runge–Kutta [40,41]. Secondly and also more challengingly, finding the symplectic
gradients that have symmetric structure is hard. The exact solution of a Hamiltonian system leads to a symplectic map
from the initial conditions to an arbitrary present state. Due to inaccuracies arising from the computed gradients of a high-
dimensional Hamiltonian using traditional neural networks, finding the exact structure of the symplectic gradients from
non-differentiable functions will often cause a large error. To address these two critical aspects, we propose the following
solutions. Firstly, we utilize the neural ODE (ODE-net)’s framework, introduced by Chen et al. in 2018, [42], to obtain the
continuous evolution. Drawing parallels between residual neural networks [43] and the modeling pattern of an ODE, Chen
et al. utilize continuously-defined dynamics to naturally incorporate data that arrive at arbitrary times. The main difficulty
lies in addressing the second aspect. To preserve symplectic structure while accurately approximating the continuous-time
evolution of dynamical systems, the neural networks have to fulfill two criteria:

1. The gradients of the Hamiltonian with respect to the generalized coordinates should be symmetric.
2. The temporal integration should be symplectic.

We made two essential contributions to meet the above two criteria when processing a Hamiltonian system by in-
corporating a set of special computing primitives into traditional neural networks. First, to enable symmetric gradients of
the Hamiltonian with respect to the generalized coordinates, we construct neural networks that model the gradients and
preserve their symmetric structure. Due to the multi-nonlinear-layer architecture of traditional deep neural networks, it is
impossible for these networks to fulfill the symmetric property. Thus, we can only use a three-layer network with the form
of linear-activation-linear, where the weights of the two linear layers are the transpose of each other. However, such a shal-
low network cannot capture the complexity of Hamiltonian systems. Therefore, in order to maintain the expressive power
of the network, we create multiple such three-layer sub-networks and combine them linearly into the Taylor series form.
As a result, our network architecture naturally preserves the symmetry of the structure while exhibiting strong expressive
power. Furthermore, to enable a symplectic preserving temporal evolution, we implement a fourth-order symplectic integra-
tor [44,45] within a neural ODE-net architecture [42,46]. This fourth-order integration step enables an explicit fourth-order
symplectic mapping to preserve the canonical character of the equations of motion in an exact manner. In other words,
it preserves the property that the temporal evolution of a Hamiltonian system yields a canonical transformation from the
initial conditions to the final state [44].

Based on these two major enhancements, we propose a novel neural network model, symplectic Taylor neural networks
(Taylor-nets), to precisely preserve the quantity and predict the dynamics of a Hamiltonian system. The Taylor-nets consist
of two sub-networks whose outputs are combined using a fourth-order symplectic integrator. Both sub-networks are em-
bedded with the form of Taylor series expansion and learn gradients of the position and momentum of the Hamiltonian
system, respectively. We design the sub-networks such that each term of the Taylor series expansion is symmetric. The
symmetric property of the terms and the fourth-order symplectic integrator ensure our model intrinsically preserves the
symplectic structure of the underlying system. Therefore, the prediction made by our neural networks leads to a symplectic
map from an initial condition to the present state of a Hamiltonian system, which is the most fundamental feature of the
exact solution of a Hamiltonian system.

With the integrated design of the sub-networks symmetric structure and the fourth-order symplectic integrator, our
learning algorithm is capable of utilizing extremely limited training data to generate highly accurate predictive results
that satisfy the conservation laws in various forms. In particular, we demonstrate that the training period of our model
can be around 6000 times shorter than its predicting period (other methods have the training period 1–25 times shorter
than the predicting period [42,34,35]), and the number of training samples is around 5 times smaller (meaning we use
5 times fewer time-sequences as in the training process) than that used by other methods. Moreover, our method only
2

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
requires the data collected at the two endpoints of the training period to train the neural networks, without requiring any
intermediate data samples in between the initial point and the endpoint. These improvements are crucial for modeling
a realistic, complex physical system because they minimize the requirement of training data, which are typically difficult
to obtain, and reduce training time by a significant amount. Other major computational merits of our proposed method
include its fast convergence rate and robustness. Thanks to the intrinsic structure-preserving characteristic of our method,
our model converges more than 10 times faster than the other methods and is more robust under large noise. Overall, the
contributions of our work can be summarized as below:

• We design a neural network architecture that intrinsically preserves the symplectic structure of the underlying system
and predicts the continuous-time evolution of a Hamiltonian system.

• We embed the form of Taylor series expansion into the neural networks with each term of the Taylor series expansion
designed to be symmetric.

• Our model outperforms other state-of-the-art methods regarding the prediction accuracy, the convergence rate, and the
robustness despite using small data with a short training period, small sample sizes, and no intermediate data to train
the model.

Our work is inspired by previous methodologies that incorporate the symplectic structure of a Hamiltonian system into
neural networks. Greydanus et al. first tried to enforce conservative features of the Hamiltonian system by reformulating
the loss function using Hamilton’s equations, known as Hamiltonian neural networks (HNNs) [34]. Based on HNNs, many
works were developed. Chen et al. developed symplectic recurrent neural networks (SRNN), which is a recurrent HNN that
relies on a symplectic integrator [47]. Toth et al. developed the Hamiltonian Generative Network (HGN), learning Hamilto-
nian dynamics from high-dimensional observations (such as images) without restrictive domain assumptions [48]. Zhong
introduced Symplectic ODE-Net (SymODEN), which adds an external control term to the standard Hamiltonian dynamics in
order to learn the system dynamics which conform to Hamiltonian dynamics with control [36]. Methods like HNN, which
focuses on the reformulation of the loss function, incur two main limitations. On the one hand, it requires the temporal
derivatives of the momentum and the position of the systems to calculate the loss function, which is difficult to obtain
from real-world systems. On the other hand, HNN doesn’t strictly preserve the symplectic structure, because its symplecto-
morphism is realized by its loss function rather than its intrinsic network architecture. Our model successfully bypasses the
time derivatives of the datasets by incorporating an integrator solver into the network architecture. Moreover, we design our
model differently by embedding a symmetric structure into the neural networks, instead of manipulating the loss function.
Thus, our model can strictly preserve the symplectic structure.

Independently, an intrinsic way to encode the symplectic structure is introduced by Jin et al. [35]. Such neural networks
are called Symplectic networks (SympNets), which intrinsically preserve the symplectic structure for identifying Hamiltonian
systems. Motivated by SympNets, we invent a neural network architecture to intrinsically preserve the symplectic structure.
However, our model preserves two major advantages over SympNets. First, our model is capable of learning the continuous-
time evolution of dynamical systems. Second, our model can easily be extended to N-body systems. The parameters scale in
the matrix map for training N dimensional Hamiltonian system of our model is O (1). The number of parameters does not
increase since based on the interactive models between particle pairs we only need data collected from two bodies as the
training data to predict the dynamics of many bodies. However, SympNets require O (N2) complexity, which makes it hard
to generalize to the high-dimensional N-body problems.

The structure of this paper is as follows. In section 2, we will first introduce the mathematical formulas and their proofs
that serve as the foundation of our methodology. Then, we will discuss the design of our neural networks in Taylor series
form as well as the proofs of their symplectic structure-preserving property. The next section 3 describes the implementa-
tion details and numerical results, which compare our methodology with other state-of-the-art methods, such as ODE-net
and HNN. In section 4, we extend the application of our methodology to solve an N-body problem. Lastly, conclusions are
drawn in a section 5 with discussions of potential directions of our future research.

2. Mathematical foundation

2.1. Hamiltonian mechanics

We start by considering a Hamiltonian system with N pairs of canonical coordinates (i.e. N generalized positions and
N generalized momentum). The time evolution of canonical coordinates is governed by the symplectic gradient of the
Hamiltonian [8]. Specifically, the time evolution of the system is governed by Hamilton’s equations as⎧⎪⎪⎨

⎪⎪⎩
dq

dt
= ∂H

∂ p
,

dp

dt
= −∂H

∂q
,

(1)

with the initial condition
3

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
(q(t0), p(t0)) = (q0, p0). (2)

In a general setting, q = (q1, q2, · · · , qN) represents the positions and p = (p1, p2, ...pN) denotes their momentum.
Function H = H(q, p) is the Hamiltonian, which corresponds to the total energy of the system. By assuming that the
Hamiltonian is separable, we can rewrite the Hamiltonian in the form

H(q, p) = T (p) + V (q). (3)

This happens frequently in Hamiltonian mechanics, with T being the kinetic energy and V the potential energy. Substituting
(3) into (1) yields⎧⎪⎪⎨

⎪⎪⎩
dq

dt
= ∂T (p)

∂ p
,

dp

dt
= −∂V (q)

∂q
.

(4)

This set of equations is fundamental in designing our neural networks. Our model will learn the right-hand side (r.h.s.) of
(4) under the framework of ODE-net.

One of the important features of the time evolution of Hamilton’s equations is symplectomorphism, which represents a
transformation of phase space that is volume-preserving. In the setting of canonical coordinates, symplectomorphism means
the transformation of the phase flow of a Hamiltonian system conserves the symplectic two-form

dp ∧ dq ≡
N∑

j=1

(
dp j ∧ dq j

)
, (5)

where ∧ denotes the wedge product of two differential forms. Inspired by the symplectomorphism feature, we aim to
construct a neural network architecture that intrinsically preserves Hamiltonian structure.

2.2. A symmetric network in Taylor expansion form

In order to learn the gradients of the Hamiltonian with respect to the generalized coordinates, we propose the following
underpinning mechanism, which is a set of symmetric networks that learn the gradients of the Hamiltonian with respect to
the generalized coordinates.⎧⎪⎪⎨

⎪⎪⎩
T p(p, θ p) → ∂T (p)

∂ p
,

V q(q, θq) → ∂V (q)

∂q
,

(6)

with parameters (θ p, θq) that are designed to learn the r.h.s. of (4), respectively. Here, the “→” represents our attempt to
use the left-hand side (l.h.s.) to learn the r.h.s. Substituting (6) into (4) yields⎧⎪⎪⎨

⎪⎪⎩
dq

dt
= T p(p, θ p),

dp

dt
= −V q(q, θq).

(7)

Therefore, under the initial condition (2), the trajectories of the canonical coordinates can be integrated as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0 +
t∫

t0

T p(p, θ p)dt,

p(t) = p0 −
t∫

t0

V q(q, θq)dt.

(8)

From (6), we obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂T p(p, θ p)

∂ p
→ ∂2T (p)

∂ p2
,

∂V q(q, θq) → ∂2 V (q)

2
.

(9)
∂q ∂q

4

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Fig. 1. The schematic diagram of T p(p, θ p) in Taylor-net.

The r.h.s. of (9) are the Hessian matrix of T and V respectively, so we can design T p(p, θ p) and V q(q, θq) as symmetric
mappings, that are

∂T p(p, θ p)

∂ p
=

[
∂T p(p, θ p)

∂ p

]T

, (10)

and

∂V q(q, θq)

∂q
=

[
∂V q(q, θq)

∂q

]T

. (11)

Due to the multiple nonlinear layers in the construction of traditional deep neural networks, it is impossible for these
deep neural networks to fulfill (10) and (11). Therefore, we can only use a three-layer network with the form of linear-
activation-linear, where the weights of the two linear layers are the transpose of each other, and in order to still maintain
the expressive power of the networks, we construct symmetric nonlinear terms, as same as the terms of a Taylor polynomial,
and combine them linearly. Specifically, we construct a symmetric network T p(p, θ p) as

T p(p, θ p) =
(

M∑
i=1

AT
i ◦ f i ◦ Ai − BT

i ◦ f i ◦ B i

)
◦ p + b, (12)

where ‘◦’ denotes the function composition, Ai and B i are fully connected layers with size Nh × N , b is a N dimensional
bias, M is the number of terms in the Taylor series expansion, and f i is an element-wise function, representing the ith order
term in the Taylor polynomial

f i(x) = 1

i! xi . (13)

Fig. 1 plots a schematic diagram of T p(p, θ p) in Taylor-net. The input of T p(p, θ p) is p, and θ p = (Ai , B i, b). We construct
a negative term BT

i ◦ f i ◦ B i following a positive term AT
i ◦ f i ◦ Ai , since two positive semidefinite matrices with opposite

signs can represent any symmetric matrix.
To prove (12) is symmetric, that is it fulfills (10), we introduce Theorem 2.1.

Theorem 2.1. The network (12) satisfies (10).

Proof. From (12), we have

∂T p(p, θ p)

∂ p
=

M∑
i=1

AT
i �A

i Ai − BT
i �B

i B i, (14)

with

�A
i = diag

⎛
⎝d f

dx

∣∣∣∣∣
x=Ai◦p

⎞
⎠ , (15)

and

�B
i = diag

⎛
⎝d f

dx

∣∣∣∣∣
x=B i◦p

⎞
⎠ . (16)

It’s easy to see that (14) is a symmetric matrix that satisfies (10). �

5

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
In fact, T p(p, θ p) in (10) and V q(q, θq) in (11) satisfy the same property, so we construct Vq with the similar form as

V q(q, θq) =
(

M∑
i=1

C T
i ◦ f i ◦ C i − DT

i ◦ f i ◦ D i

)
◦ q + d. (17)

Here, C i , D i , and d have the same structure as (12), and (C i , D i, d) = θq .

2.3. Symplectic Taylor neural networks

Next, we substitute the constructed network (12) and (17) into (8) to learn the Hamiltonian system (4). We employ
ODE-net [42] as our computational infrastructure. Here we briefly introduce the essential idea of ODE-net for completeness.
Under the perspective of viewing a neural network as a dynamic system, we can treat the chain of residual blocks in a
neural network as the solution of an ODE with the Euler method. Given a residual network that consists of sequence of
transformations

ht+1 = ht + f (ht, θt), (18)

the idea is to parameterize the continuous dynamics using an ODE specified by a neural network:

dh(t)

dt
= f (ht, t, θ). (19)

Algorithm 1 Integrate (8) by using the fourth-order symplectic integrator.
Input: q0, p0, t0, t, �t ,

F j
t in (20) and F j

k in (21) with j = 1, 2, 3, 4;
Output: q(t), p(t)

n = floor[(t − t0)/�t];
for i = 1, n

(k0
p , k0

q) = (pi−1, qi−1);
for j = 1, 4

(t j−1
p , t j−1

q) = F j
t (k j−1

p , k j−1
q , �t),

(k j
p , k j

q) = F j
k(t

j−1
p , t j−1

q , �t),
end
(pi , qi) = (k4

p, k4
q);

end
q(t) = qn, p(t) = pn .

Inspired by the idea of ODE-net, we design neural networks that can learn continuous time evolution. In Hamiltonian
system (4), where the coordinates are integrated as (8), we can implement a time integrator to solve for p and q. While
ODE-net uses fourth-order Runge–Kutta method to make the neural networks structure-preserving, we need to implement
an integrator that is symplectic. Therefore, we introduce Taylor-net, in which we design the symmetric Taylor series ex-
pansion and utilize the fourth-order symplectic integrator to construct neural networks that are symplectic to learn the
gradients of the Hamiltonian with respect to the generalized coordinates and ultimately the temporal integral of a Hamilto-
nian system.

For the constructed networks (12) and (17), we integrate (8) by using the fourth-order symplectic integrator [44]. Specif-
ically, we will have an input layer (q0, p0) at t = t0 and an output layer (qn, pn) at t = t0 + ndt . The recursive relations of
(qi, pi), i = 1, 2, · · · , n, can be expressed by the Algorithm 1. The input function in Algorithm 1 are

F j
t (p,q,dt) = (

p,q + c j T p(p, θ p)dt
)
, (20)

and

F j
k(p,q,dt) = (

p − d j V q(q, θq)dt,q
)
, (21)

with

c1 = c4 = 1

2(2 − 21/3)
, c2 = c3 = 1 − 21/3

2(2 − 21/3)
,

d1 = d3 = 1

2 − 21/3
, d2 = − 21/3

2 − 21/3
, d4 = 0.

(22)

The derivation of the coefficients c j and d j can be found in [44,49,50]. Relationships (20) and (21) are obtained by replacing
∂T (p)/∂ p and ∂V (q)/∂q in the fourth-order symplectic integrator with deliberately designed neural networks T p(p, θ p)

and V q(q, θq), respectively. Fig. 2 plots a schematic diagram of Taylor-net which is described by Algorithm 1. The input of
6

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Fig. 2. The schematic diagram of Taylor-net. The input of Taylor-net is (q0, p0), and the output is (qn, pn). Taylor-net consists of n iterations of fourth-order
symplectic integrator. The input of the integrator is (qi−1, pi−1), and the output is (qi , pi). The four intermediate variables t0

p · · · t4
p and k0

q · · ·k4
q show that

the scheme is fourth-order.

Taylor-net is (q0, p0), and the output is (qn, pn). Taylor-net consists of n iterations of fourth-order symplectic integrator. The
input of the integrator is (qi−1, pi−1), and the output is (qi, pi). Within the integrator, the output of T p is used to calculate
q, while the output of V q is used to calculate p, which is signified by the shoelace-like pattern in the diagram. The four
intermediate variables t0

p · · · t4
p and k0

q · · ·k4
q indicate that the scheme is fourth-order.

By constructing the network T p(p, θ p) in (12) that satisfies (10), we show that Theorem 2.2 holds, so the network (20)
preserves the symplectic structure of the system.

Theorem 2.2. For a given dt, the mapping F j
t (:, :, dt) :R2N →R2N in (20) is a symplectomorphism if and only if the Jacobian of T p

is a symmetric matrix, that is, it satisfies (10).

Proof. Let

(t p, tq) = F j
t (kp,kq,dt). (23)

From (20), we have

dt p ∧ dtq = dkp ∧ dkq+
1

2

N∑
l,m=1

c jdt

[
∂T p(kp, θ p)

∂kp

∣∣∣∣∣
l,m

− ∂T p(kp, θ p)

∂kp

∣∣∣∣∣
m,l

]
dkp|l ∧ dkq|m.

(24)

Here A|l,m refers to the entry in the l-th row and m-th column of a matrix A, x|l refers to the l-th component of vector
x. From (24), we know that dt p ∧ dtq = dkp ∧ dkq is equivalent to

∂T p(kp, θ p)

∂kp

∣∣∣∣∣
l,m

− ∂T p(kp, θ p)

∂kp

∣∣∣∣∣
m,l

= 0, ∀l,m = 1,2, · · · , N, (25)

which is (10). �
Similar to the Theorem 2.2, we can find the relationship between F j

k and the Jacobian of V q . The proof of 2.3 is omitted
as it is similar to the proof of the Theorem 2.2.

Theorem 2.3. For a given dt, the mapping F j
k(:, :, dt) :R2N →R2N in (21) is a symplectomorphism if and only if the Jacobian of V q

is a symmetric matrix, that is, it satisfies (11).

Suppose that �1 and �2 are two symplectomorphisms. Then, it is easy to show that their composite map �2 ◦ �1 is
also symplectomorphism due to the chain rule. Thus, the symplectomorphism of the Algorithm 1can be guaranteed by the
Theorems 2.2 and 2.3.

3. Numerical methods and results

This section discusses the details of our implementation, including the numerical method to generate training data, the
construction of the neural networks, and the predictions for arbitrary time points on a continuous timeline.
7

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
3.1. Dataset generation

To make a fair comparison with the ground truth, we generate our training and testing datasets by using the same nu-
merical integrator based on a given analytical Hamiltonian. In the learning process, we generate Ntrain training samples, and
for each training sample, we first pick a random initial point (q0, p0) (input), then use the symplectic integrator discussed
in section 2.1 to calculate the value (qn, pn) (target) of the trajectory at the end of the training period Ttrain . We do the
same to generate a validation dataset with Nvalidation = 100 samples and the same time span as Ttrain and calculate the
validation loss Lvalidation along the training loss Ltrain to evaluate the training process. In addition, we generate a set of
testing data with Ntest = 100 samples and predicting time span T predict that is around 6000 times larger and calculate the
prediction error εp to evaluate the predictive ability of the model. For simplicity, we use (p̂n, ̂qn) to represent the predicted
values using our trained model.

We remark that our training dataset is relatively smaller than that used by the other methods. Most of the methods, e.g.
ODE-net [42] and HNN [34], have to rely on intermediate data in their training data to train the model. That is the dataset
is [(q(s)

0 , p(s)
0), (q(s)

1 , p(s)
1), . . . , (q(s)

n−1, p
(s)
n−1), (q(s)

n , p(s)
n)]Ntrain

s=1 , where (q(s)
1 , p(s)

1) . . . , (q(s)
n−1, p

(s)
n−1) are n − 1 intermediate points

collected within Ttrain in between (q(s)
0 , p(s)

0) and (q(s)
n , p(s)

n). On the other hand, we only use two data points per sample,

the initial data point and the end point, and our dataset looks like
[
(q(s)

0 , p(s)
0), (q(s)

n , p(s)
n)

]Ntrain

s=1
, which is n −1 times smaller

the dataset of the other methods, if we do not count (q(s)
0 , p(s)

0). Our predicting time span T predict is around 6000 times the
training period used in the training dataset Ttrain (as compared to 10 times in HNN). This leads to a 600 times compression
of the training data, in the dimension of temporal evolution. Note that we fix Ttrain and T predict in practice so that we
can train our network more efficiently on GPU. One can also choose to generate training data with different Ttrain for each
sample to obtain more robust performance.

3.2. Test cases

We consider the pendulum, the Lotka–Volterra, the Kepler, and the Hénon–Heiles systems in our implementation.

Pendulum system. The Hamiltonian of an ideal pendulum system is given by

H(q, p) = 1

2
p2 − cos (q). (26)

We pick a random initial point for training (q0, p0) ∈ [−2,2] × [−2,2].

Lotka–Volterra system. For a Lotka–Volterra system, its Hamiltonian is given by

H(q, p) = p − ep + 2q − eq. (27)

Similarly, we pick a random initial point for training (q0, p0) ∈ [−2,2] × [−2,2].

Kepler system. Now we consider a eight-dimensional system, a two-body problem in 2-dimensional space. Its Hamiltonian
is given by

H(q, p) =H(q1,q2,q3,q4, p1, p2, p3, p4) = 1

2
(p2

1 + p2
2 + p2

3 + p2
4) − 1√

q2
1 + q2

2 + q2
3 + q2

4

, (28)

where (q1, q2) and (p1, p2) are the position and momentum associated with the first body, (q1, q2) and (p3, p4) are the
position and momentum associated with the second body. We randomly pick the initial training point (q0, p0) ∈ [−3,3] ×
[−2,2], and enforce a constraint on the initial (q1, q2) and (p1, p2) so that they are at least separated by some distance
Ld = 4. This is to avoid having infinite force immediately.

Hénon–Heiles system. Lastly, we introduce a four-dimensional Hénon–Heiles system, which is a non-integrable system. This
kind of chaotic system is generally hard to model. Its Hamiltonian is defined as

H(q, p) =H(q1,q2, p1, p2) = 1

2
(p2

1 + p2
2) + 1

2
(q2

1 + q2
2) + (q2

1q2 − q3
2

3
). (29)

The random initial point for training is (q0, p0) ∈ [−0.5,0.5] × [−0.5,0.5].
8

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Table 1
Set-up of problems.

Problems Pendulum Lotka-Volterra Kepler Hénon–Heiles

Hamiltonian (26) (27) (28) (29)
Ttrain 0.01 0.01 0.01 0.01
T predict 20π 20π 20π 10
Ntrain 15 25 25 25
Epoch 100 150 50 100
Learning rate 0.002 0.003 0.001 0.001
step_size 10 10 10 10
γ 0.8 0.8 0.8 0.8
M 8 8 20 12
Nh 16 8 8 16
Ltrain 2.75 × 10−5 2.37 × 10−5 7.29 × 10−5 9.24 × 10−6

Lvalidation 1.39 × 10−4 6.73 × 10−5 6.41 × 10−5 9.44 × 10−6

3.3. Training settings and ablation tests

For all four systems, we use the Adam optimizer [51]. We choose the automatic differentiation method as our backward
propagation method. We have tried both the adjoint sensitivity method, which is used in ODE-net [42] and the automatic
differentiation method. Both methods can be used to train the model well. However, we found that using the adjoint
sensitivity method is much slower than using the automatic differentiation method considering the large parameter size of
neural networks. Therefore, we use the automatic differentiation method in our implementation. The detailed derivation of
adjoints formulas under the setting of Taylor-net and the prediction result can be found in Appendix A.

All Ai and Bi in (12) are initialized as Ai, Bi ∼N(0,
√

2/[N ∗ Nh ∗ (i + 1)]), where N is the dimension of the system and
Nh is the size of the hidden layers. The loss function is

Ltrain = 1

Ntrain

Ntrain∑
s=1

‖p̂(s)
n − p(s)

n ‖1 + ‖q̂(s)
n − q(s)

n ‖1. (30)

The validation loss Lvalidation is the same as (30) but with dataset different from the training dataset. We choose L1 loss,
instead of Mean Square Error (MSE) loss because L1 loss performs better in all cases given in Table 1. We conduct the
ablation test on these problems to compare the validation loss after convergence with different training loss functions in
the training process. Fig. B.14 shows the comparison of validation losses with different training loss functions in the training
process of different problems validated by L1 loss function. Fig. B.15 shows the comparison of validation losses with different
training loss functions in the training process of different problems validated by MSE loss function. We observe that for all
problems, the validation loss with L1 is smaller than that with MSE after convergence. We believe the better performance
of L1 may be due to MSE loss’s high sensitivity to outliers. Hence, we choose to use L1 loss as our training loss function.

The details of the parameters we set and some other important quantities can be found in Table 1. To show the predictive
ability of our model, we pick T predict = 20π for the pendulum, the Lotka–Volterra and the Kepler problems. For the Hénon–
Heiles problem, we pick T predict = 10 because of its chaotic nature. We pick 15 as the sample size for the pendulum problem
and 25 for other problems since we find that small Ntrain ’s are sufficient to generate excellent results. More discussions
about Ntrain can be found in section 3.6. The epoch parameter represents the number of epochs needed for the training
loss to converge. step_size indicates the period of learning rate decay, and γ is the multiplicative factor of learning rate
decay. These two parameters decay the learning rate of each parameter group by γ every step_size epochs, which prevents
the model from overshooting the local minimum. The dynamic learning rate can also make our model converges faster. M
indicates the number of terms of the Taylor polynomial introduced in the construction of the neural networks (12). Through
experimentation, we find that 8 terms can represent most functions well. Therefore, we pick M = 8 for the pendulum
and the Lotka-Volterra problems. For more complicated systems, like the Kepler and the Hénon–Heiles systems, we choose
M = 20 and M = 12, respectively.

Nh , the dimension of hidden layers, is a parameter that needs to be carefully chosen. We conduct the ablation test on the
pendulum, the Lotka–Volterra, the Kepler, and the Hénon–Heiles problems to compare the validation loss using different Nh .
Fig. 3 shows the results of the test. From Fig. 3(a), it can be seen that the validation loss after convergence for the pendulum
problem drops significantly after increasing Nh from 8 to 16 and then stays relatively similar with higher Nh . Therefore,
we choose to use 16 as Nh for the pendulum problem. Following the same logic, we choose 8, 8, and 16 as Nh for the
Lotka–Volterra, the Kepler, and the Hénon–Heiles problems. Notice that Nh for the lower-dimensional problem, namely,
the pendulum problem, is larger than Nh for the higher dimensional problem, the Kepler problem. This is because, for the
higher-dimensional problem, the degree of freedom is actually more limited. This is due to the prior knowledge that the
forces between objects are the same.

Another vital parameter that is not mentioned in Table 1 is the integral time step �t in the symplectic integrator. Notice
that the choice of �t largely depends on the time span Ttrain . Fig. 4 compares the validation losses generated by various
integral time steps �t based on fixed dataset time spans Ttrain = 0.01, 0.1 and 0.2 respectively in the training process. For
9

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Fig. 3. Comparisons of validation losses with different Nh in the training process for (a) the pendulum, (b) the Lotka–Volterra, (c) the Kepler, and (d) the
Hénon–Heiles problems.

Fig. 4. Comparisons of validation losses with different dt in the training process. (a), (b), and (c) are trained based on different time spans Ttrain = 0.01,
0.1, and 0.2, respectively.

the concern of gradient vanishing or exploding, notice that when the number of iterations n is big, which is when �t is
small, we did not observe these issues, as shown in 4(a), where the smallest �t is 10−4. Since we embed the structure
of residual networks in our symplectic integrator, there should not be the problem of vanishing gradient. It is clear that
the validation loss converges to a similar degree with various �t based on fixed Ttrain = 0.01 and Ttrain = 0.1 in 4(a) and
(b), while it increases significantly as �t increases based on fixed Ttrain = 0.02 in 4(c). Thus, we need to be careful when
choosing n, or �t , for the dataset with larger time span Ttrain .

We record the training loss for all the problems at the epochs specified above. It is worth noticing that the training loss
of our model is at 10−5 order of magnitude and below, which indicates our model’s ability to fit the training data. As we
can see from Fig. 5, the prediction results using Taylor-net match perfectly with the ground truth for all three systems, even
though the Ttrain = 0.01 is 2000π times shorter than the T predict = 20π in Fig. 5 (a) and (b), and 1000 times shorter in
Fig. 5 (c). In particular, our model predicts the dynamics of the chaotic system, the Hénon–Heiles system (29) extremely
well, which regular neural networks fail to do. The results indicate the compelling predictive ability of our model. This can
be seen more clearly in 3.5 when we compare Taylor-net with other methods.

3.4. Taylor series vs. ReLU

In order to evaluate the performance of using Taylor series as the underlying structure of Taylor-net to ensure nonlinear-
ity, we also implement the most commonly used activation function, ReLU and compare the training loss with our current
model. We construct the neural networks as (12) with parameters specified in Table 1, except we use f i(x) = max(0, x)
instead. The experimental results show that the neural networks perform better with Taylor series than with ReLU in the
10

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Fig. 5. Prediction result using Taylor-net for (a) the pendulum, (b) the Lotka–Volterra, and (c) the Hénon–Heiles problems. For better visualization, we set
the initial points as (a) (q0, p0) = (1, 1), (b) (q0, p0) = (1, 1), and (c) (q0, p0) = ([0, 0], [0.5, 0.5]). The prediction results using Taylor-net match perfectly
with the ground truth for all three systems, even though the Ttrain is 2000π times shorter than the T predict in (a) and (b), and 1000 times shorter in (c).
Ttrain = 0.01 and T predict = 20π in (a) and (b), and Ttrain = 0.01 and T predict = 10 in (c).

Fig. 6. Mean of Ltrain using Taylor series vs. using ReLU for (a) the pendulum, (b) the Lotka–Volterra, and (c) the Kepler problems. We train each model until
Ltrain converges and average Ltrain for (a) every 10 epochs for the pendulum problem, (b) every 10 epochs for the Lotka–Volterra problem, and (c) every 5
epochs for the Kepler problem.

pendulum, the Lotka–Volterra, and the Kepler problems. We can observe from Fig. 6 that in all three problems the loss of
using ReLU is larger than the loss of using Taylor series after the loss converges. In the pendulum problem, the mean of
loss after convergence from 100 epochs to 300 epochs using the Taylor series is 8.878 × 10−5, while that of using ReLU
is 8.348 × 10−4, which is 10 times larger than the mean of loss using Taylor series. The difference in the Lotka–Volterra
problem is even more obvious. The mean of loss from 100 epochs to 300 epochs using the Taylor series is 7.832 × 10−5,
while that of using ReLU is 4.782 × 10−3. In the Kepler problem, the mean of loss from 40 epochs to 100 epochs using the
Taylor series is 2.524 × 10−4, while that of using ReLU is 8.408 × 10−4. In all three problems, the Taylor series performs
undoubtedly better than ReLU. Thus, the results clearly show that using the Taylor series gives a better approximation of
the dynamics of the system. The strong representational ability of the Taylor series is an important factor that increases the
accuracy of the prediction.

3.5. Predictive ability and robustness

Now, to assess how well our method can predict the future flow, we compare the predictive ability of Taylor-net with
ODE-net and HNN. We apply all three methods on the pendulum problem, and let Ttrain = 0.01 and T predict = 20π . We
evaluate the performance of the models by calculating the average prediction error at each predicted points, defined by

ε
(nt)
p = 1

Ntest

Ntest∑
s=1

‖p̂(s,nt)
n − p(s,nt)

n ‖1 + ‖q̂(s,nt)
n − q(s,nt)

n ‖1, (31)

and the average ε(nt)
p over T predict is

εp = 1

NT

NT∑
nt=1

ε
(nt)
p , (32)

where Ntest represents the testing sample size specified in section 3.1 and NT = T predict/�t with �t = 0.01. After exper-
imentation, we find that Taylor-net has stronger predictive ability than the other two methods. The first row of Table 2
shows the average prediction error of 100 testing samples using the three methods over T predict when no noise is added.
The prediction error of HNN is almost double that of Taylor-net, while the prediction error of ODE-net is about 7 times that
11

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Table 2
Comparison of εp for the pendulum problem without noise, with noise
σ1, σ2 ∼N(0, 0.1), and with noise σ1, σ2 ∼N(0, 0.5).

Methods Taylor-net HNN ODE-net

εp , without noise 0.213 0.377 1.416
εp , with noise σ1, σ2 ∼N(0,0.1) 1.667 2.433 3.301
εp , with noise σ1, σ2 ∼N(0,0.5) 1.293 2.416 27.114

Fig. 7. Prediction error ε(nt)
p at different t from t = 0 to t = 20π for the pendulum problem (a) without noise, (b) with noise σ1, σ2 ∼N(0, 0.1), and (c) with

noise σ1, σ2 ∼N(0, 0.5). In the figure, t = nt�t , where �t = 0.01. ε(nt)
p is the prediction error at the nth

t predicted point among the total NT = T predict/�t
predicted points. We use Ttrain = 0.01, Ttrain = 0.5 and Ttrain = 1 to train the model in (a), (b), and (c), respectively.

of Taylor-net. To analyze the difference more quantitatively, we made several plots to help us better compare the prediction
results. Fig. 7 shows the plots of prediction error ε(nt)

p against t = nt�t over T predict for all three methods. In Fig. 8, we plot
the prediction of position q against time period for all three methods as well as the ground truth in order to see how well
the prediction results match the ground truth. From Fig. 8 (a), we can already see that the prediction result of ODE-net
gradually deviates from the ground truth as time progresses, while the prediction of Taylor-net and HNN stays mostly con-
sistent with the ground truth, with the former being slightly closer to the ground truth. The difference between Taylor-net
and HNN can be seen more clearly in Fig. 7 (a). Observe that the prediction error of Taylor-net is obviously smaller than
that of the other two methods, and the difference becomes more and more apparent as time increases. The prediction error
of ODE-net is larger than HNN and Taylor-net at the beginning of T predict and increases at a much faster rate than the other
two methods. Although the prediction error of HNN has no obvious difference from that of Taylor-net at the beginning, it
gradually diverges from the prediction error of Taylor-net.

Additionally, in Fig. 9, we plot the numerically solved ground truth, Taylor-net, HNN, and ODE-net calculated Hamiltonian
for the pendulum problem. Fig. 9 shows that the Taylor-net preserves the Hamiltonian relatively successfully, while ODE-net
diverges away from the ground truth quickly. Although the predicting result of HNN does not seem to drift away from the
ground truth, the divergent amplitude of HNN is greater than that of Taylor-net. Note that our model strictly preserves
the symplectic structure, which is a geometric structure that cannot be quantitatively calculated and plotted. Since the
symplectic structure is preserved, the Hamiltonian predicted by our model is much closer to the ground truth.

In real systems, it is almost impossible to collect data without noise. Therefore, with noisy data, the robustness of neural
networks is particular important. Instead of using (qn, pn) to train the model, we add some random noise to the true
value so that it becomes (qn + σ1, pn + σ2). We test three models on two cases with small and large noises. We add noise
σ1, σ2 ∼ N(0, 0.1) in the case of small noise and σ1, σ2 ∼ N(0, 0.5) in the case of large noise. We use Ttrain = 0.5 and
Ttrain = 1 to train the model in the cases of small and large noises respectively. In both cases, we use 50 samples and make
prediction over T predict = 20π .

Fig. 10 shows the predicted p versus q using different methods. From Fig. 10 (a), we find that Taylor-net discovers the
unknown trajectory successfully, while ODE-net diverges from the true value quickly. Although the predicting result of HNN
does not seem to drift away from the true dynamics, it does not fit the true trajectory as well as the prediction made by
Taylor-net. The difference becomes clearer as we increase the noise. From Fig. 10 (b), we observe that Taylor-net still makes
predictions that are almost consistent with the true trajectories, while ODE-net completely fails to do so. Moreover, the
prediction made by HNN is much worse than in the case of small noise, while the performance of Taylor-net remains as
good as the previous case.

This can be more clearly seen from Fig. 7 (b) and (c). We can see that ε(nt)
p of Taylor-net is consistent in both cases

of small and large noises, while ε(nt)
p of HNN and ODE-net increase significantly and exhibit more fluctuation. It is worth

noticing that in Fig. 7 (c), ε(nt)
p of HNN becomes smaller towards the end of T predict . However, it is not because the perfor-

mance of HNN becomes better, but rather due to the fact that the predicted flow of HNN is off by one period of motion,
which can be seen from Fig. 8 (c). The second and third rows of Table 2 also give an overview on how the prediction error
εp over T predict of the three methods differ. From Fig. 8 (b) and (c), we can clearly observe that the amplitude of predicted
q using ODE-net increases as t increases, and the amplitude of predicted q using HNN is slightly larger or smaller than that
12

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Fig. 8. Prediction results of position q from t = 0 to t = 20π for the pendulum problem using Taylor-net, HNN, and ODE-net (a) without noise, (b) with
noise σ1, σ2 ∼ N(0, 0.1), and (c) with noise σ1, σ2 ∼ N(0, 0.5). For all the models, we set the initial point as (q0, p0) = (1, 1). We use Ttrain = 0.01,
Ttrain = 0.5 and Ttrain = 1 to train the model in (a), (b), and (c), respectively. All the methods are trained until the Lvalidation converges.

of the ground truth from the beginning. In contrast, due to the intrinsic symplectic structure of Taylor-net, the amplitude of
predicted q using Taylor-net is inconsistent with the ground truth, without changing in time. Additionally, it is obvious that
the predicted q using Taylor-net has the smallest phase shift among the three methods.

3.6. Training sample size and convergence rate

Besides the strong predictive ability and robustness, we also want to highlight the significantly small Ntrain and the
fast convergence rate of our approach. In a complex physical system, the cost of acquiring data is high. Our model can
learn from the dataset that contains less than 15 samples and still generate validation loss Lvalidation that is below 10−4.
13

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Fig. 9. Prediction results of Hamiltonian H from t = 0 to t = 12π for the pendulum problem (a) without noise, (b) with noise σ1, σ2 ∼ N(0, 0.1), and
(c) with noise σ1, σ2 ∼N(0, 0.5).

Fig. 10. Prediction results of position q and momentum p from t = 0 to t = 20π . (a) with noise σ1, σ2 ∼N(0, 0.1) and (b) with noise σ1, σ2 ∼N(0, 0.5) in
training process. We use Ttrain = 0.5 and Ttrain = 1 to train the model in (a) and (b) respectively. All the methods are trained until the Lvalidation converges.
In (a), we only plot the result of ODE-net until t = 4π because the result beyond that will further diverge from the ground truth and cannot be fit into the
graph. For the same reason, we only plot the result of ODE-net until t = π in (b).

Fig. 11. (a) At 100 epochs, Lvalidation as a function of sample size ranging from Ntrain = 1 to Ntrain = 25. The Lvalidation is averaged over 50 trials. (b) Prediction
results of position q and momentum p from t = 0 to t = 2π from t = 0 to t = 20π using trained models after 1 epoch.

In Fig. 11 (a), we plot the Lvalidation as a function of sample size using Taylor-net, HNN, and ODE-net. To make a fair
comparison, we average the values of Lvalidation over 50 trials. We can observe that the Lvalidation for Taylor-net at 1 sample
is around 5 times smaller than the Lvalidation for ODE-net and the Lvalidation for HNN. Although there are some fluctuations
in Lvalidation due to small Ntrain , the Lvalidation for Taylor-net converges at around 10 samples, while the Lvalidation for HNN is
still decreasing. Although the Lvalidation for ODE-net also converges around 10 samples, the value of its Lvalidation is 10 times
larger than that the Lvalidation for Taylor-net.

Because of the intrinsically structure-preserving nature of our model, our model can well predict the dynamics of the
underlying system even when it is trained for only a few epochs. In Fig. 11 (b), we plot the prediction results from t = 0
to t = 20π using Taylor-net, HNN, and ODE-net after only 1 epoch of training. The prediction results made by HNN and
ODE-net completely fail to match the true flow, while Taylor-net predicts the truth to a level that can never be achieved
using HNN and ODE-net at such a small number of epochs.
14

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Table 3
Comparison between Taylor-net, HNN, ODE-net. � represents the method preserves such property.

Methods Taylor-net HNN ODE-net

Utilize physics prior � � Partially
Preserve symplectic structure � Partially
No need for intermediate training data �
No need for analytical solution of derivative �
Number of epochs until Ltrain convergesa 100 1000 7000
Sample size needed for Lvalidation ∼ 10−4 b 15 50 50

a In the pendulum problem with sample size 15.
b In the pendulum problem, train each model until convergence.

We summarize the main traits and performance of the three methodologies in Table 3. We already emphasized enough
that our model utilizes physics prior through constructing neural networks that intrinsically preserve the symplectic struc-
ture. Due to our model’s structure-preserving ability, it can make accurate predictions with a very small training dataset
that does not require any intermediate data. We also want to mention that HNN and ODE-net both require the analytical
solutions of the temporal derivatives to train their models, which are often not obtainable from real systems. Moreover,
besides the qualitative differences, we also compare the three methods quantitatively. In the pendulum problem, we fix the
sample size to be 15 and find Taylor-net only needs 100 epochs for Ltrain to converge, while HNN and ODE-net need 1000
epochs and 7000 epochs respectively. We also test how many samples Taylor-net, HNN, and ODE-net need for Lvalidation to
decrease to 10−4. Notice that we train Taylor-net, HNN, and ODE-net until convergence, which is for 100, 1000, and 7000
epochs respectively. Taylor-net only needs 15 samples and 100 epochs of training to achieve Lvalidation ∼ 10−4, while HNN
needs 50 samples and 1000 epochs and ODE-net needs 50 samples and 7000 epochs. If we train HNN and ODE-net for 100
epochs in the same manner as Taylor-net, their Lvalidation will never reach 10−4.

4. High-dimensional systems

We want to extend our model into higher-dimensional dynamical systems. Let’s consider a more complicated system, a
multidimensional N-body system. Its Hamiltonian is given by

H(q, p) = 1

2

Nbody∑
i=1

‖pi‖2 −
∑

1≤i< j≤Nbody

1

‖q j − qi‖
, (33)

where Nbody is the number of bodies in the system, and Nbody × (dimension of space) = N .
In a two-dimensional space, consider a system with Nbody > 2 bodies. The cost of collecting training data from all

Nbody bodies may be high, and the training process may be time inefficient. Thus, instead of collecting information from
all Nbody bodies to train our model, we only use data collected from two bodies as training data to make a prediction of
the dynamics of Nbody bodies. This is based on the assumption that the interactive models between particle pairs with
unit particle strengths m = 1 are the same, and their corresponding Hamiltonian can be represented as network Ĥθ (x j, xk),
based on which the corresponding Hamiltonian of Nbody particles can be written as [52,53]

Hθ =
Nbody∑
i, j=1

m jmkĤθ (x j, xk). (34)

We embed (34) into the symplectic integrator that includes m j to obtain the final network architecture.
The setup of N-body problem is similar to the previous problems. The training period is Ttrain = 0.08 and the prediction

period is T predict = 2π . Similar to the setup of previous problems, the learning rate is decaying every 10 epochs. Learning
rate, γ , i, step_size, and M are the same as the setup of Kepler problem in Table 1, except we use 40 samples to train our
model. The training process takes about 100 epochs for the loss to converge. In Fig. 12, we use our trained model to predict
the dynamics of a 3-body system and a 6-body system. In both cases, our model can predict the paths accurately, with
the predicted paths in the 3-body system matching the true paths perfectly. The success of these tasks shows the strong
generalization ability of our model. Based on our experiments, our model can be applied to problems with a larger scale,
for example, to predict the motions of hundreds of bodies.

5. Conclusion

We present Taylor-nets, a novel neural network architecture that can conduct continuous, long-term predictions based on
sparse, short-term observations. Taylor-nets consist of two sub-networks, whose outputs are combined using a fourth-order
symplectic. Both sub-networks are embedded with the form of Taylor series expansion where each term is designed as a
symmetric structure. Our model is able to learn the continuous-time evolution of the target systems while simultaneously
15

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Fig. 12. Predicted position q and momentum p from t = 0 to t = 2π (a) for 3 bodies and (b) for 6 bodies. In both (a) and (b), the training period is
Ttrain = 0.08, and the prediction period is T predict = 2π . We use the same trained model to make the predictions in (a) and (b), which is trained for 100
epochs.

preserving their symplectic structures. We demonstrate the efficacy of our Taylor-net in predicting a broad spectrum of
Hamiltonian dynamic systems, including the pendulum, the Lotka–Volterra, the Kepler, and the Hénon–Heiles systems.

We evaluate the performance of using the Taylor series as the underlying structure of Taylor-net by comparing it with
the most used activation function, ReLU. The experimental results show that the neural networks perform better with Taylor
series than with ReLU in the pendulum, the Lotka–Volterra, and the Kepler problems. In all three systems, the training loss
of using the Taylor series is 10 to 100 times smaller than that of using ReLU. The strong representation ability of the Taylor
series is an important factor that increases the accuracy of the prediction.

Moreover, we compare Taylor-net with other state-of-art methods, ODE-net and HNN, to access its predictive ability
and robustness. We observe that the prediction error of Taylor-net over the prediction period is half of that of HNN and
one-seventh of that of ODE-net. The predictions made by HNN and ODE-net also diverge from the true flow much faster
as time increases. Additionally, to test the robustness of our model, we implement two testing cases with small and large
noises. We add noise σ1, σ2 ∼ N(0, 0.1) in the case of small noise and σ1, σ2 ∼ N(0, 0.5) in the case of large noise. In
the first case, Taylor-net discovers the unknown trajectory successfully, while ODE-net diverges away from the true value
quickly. Although the predicting result of HNN does not seem to drift away from the true dynamics, it does not fit the true
trajectory as well as the prediction made by Taylor-net. The prediction error of Taylor-net is about two-thirds and half of
that of HNN and ODE-net respectively. The difference becomes clearer as we increase the noise. We observe that Taylor-
net still makes predictions that are almost consistent with the true trajectories, while ODE-net completely fails to do so.
Moreover, the prediction made by HNN is much worse than in the case of small noise, while the performance of Taylor-net
remains as good as the previous case. The prediction error of Taylor-net is about half and one-twentieth of that of HNN and
ODE-net respectively.

Additionally, we highlight the small training sample size and the fast convergence rate of our model. Under the same
setting, HNN and OED-net need 5 times more samples than our model does to achieve the same validation loss, and their
models take 10 times and 70 times more epochs to converge. We also test our model under only 1 epoch of training, the
prediction results made by HNN and ODE-net completely fail to match the true flow, while Taylor-net predicts the truth
to a level that is incomparable with HNN and ODE-net. Compared with HNN and OED-net, our model exhibits its unique
computational merits by using small data with a short training period (6000 times shorter than the predicting period), small
sample sizes, and no intermediate data to train the networks while outperforming others regrading the prediction accuracy,
convergence rate, and robustness to a great extent.

Towards the end of our work in section 4, we discussed the N-body system, which is a high-dimensional Hamiltonian
system whose underlying governing equations are non-differentiable. In our future works, we will continue to explore
solving this kind of high-dimensional problems, using some essential ideas of Taylor-nets with potential modifications. An
other interesting direction will be to design a different neural network architecture with the same structure-preserving
ability to learn the dynamics of non-separable Hamiltonian systems.

CRediT authorship contribution statement

Yunjin Tong: Formal analysis, Investigation, Software, Validation, Visualization, Writing – original draft, Writing – review
& editing. Shiying Xiong: Conceptualization, Methodology, Software, Visualization, Writing – review & editing. Xingzhe He:
Software, Writing – review & editing. Guanghan Pan: Formal analysis, Validation, Writing – review & editing. Bo Zhu:
Funding acquisition, Project administration, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
16

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Acknowledgements

This project is support in part by Neukom Institute CompX Faculty Grant, Burke Research Initiation Award, and NSF
MRI 1919647. Yunjin Tong is supported by the Dartmouth Women in Science Project (WISP), Undergraduate Advising and
Research Program (UGAR), and Neukom Scholars Program. Our code is available at https://github .com /ytong6 /Taylor-net.

Appendix A. Adjoint method

Apply the chain rule to the gradients of loss function and consider the two neural networks T p(p, θ p) and V q(q, θq)

under the framework of neural ODEs, we obtain the following sets of equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L

∂θ p
= ∂L

∂q (t1)

dq (t1)

dθ p

q (t1) =
t1∫

t0

T p(p, θ p)dt + q0

(A.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L

∂θq
= ∂L

∂ p (t1)

dp (t1)

dθq

p (t1) = −
t1∫

t0

V q(q, θq)dt + p0

(A.2)

where L is the loss function, and q (t1), p (t1), q0, and p0 are q and p at t1 and t0, respectively.
Let bp(t) = dq (t) /dθ p and bq(t) = dp (t) /dθq , we derive the following equations:

bp(t) = dq (t)

dθ p
=

t∫
t0

[
∂T p

∂θ p
+ ∂T p

∂ p
bp(τ)

]
dτ

=⇒

⎧⎪⎨
⎪⎩

dbp(t)

dt
= ∂T p

∂θ p
+ ∂T p

∂ p
bp(t)

bp(0) = 0,

(A.3)

bq(t) = dp (t)

dθq
= −

t∫
t0

[
∂V q

∂θq
+ ∂V q

∂q
bq(τ)

]
dτ

=⇒

⎧⎪⎨
⎪⎩

dbq(t)

dt
= −∂V q

∂θq
− ∂V q

∂q
bq(t)

bq(0) = 0.

(A.4)

Given bp and bq , we can rewrite the gradients of loss function as

∂L

∂θ p
= ∂L

∂q (t1)
bp(t), (A.5)

and

∂L

∂θq
= ∂L

∂ p (t1)
bq(t). (A.6)

However, the scale for solving differential equations of bq and bp is too large. We therefore rewrite bp and bq as

bp(t) = P p(t)

t∫
t0

P p(τ)−1 ∂T p

∂θ p
dτ , (A.7)

and

bq(t) = −P q(t)

t∫
P q(τ)−1 ∂V q

∂θq
dτ . (A.8)
t0

17

https://github.com/ytong6/Taylor-net

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Substitute bp and bq into (A.3), (A.4), (A.5), and (A.6), we obtain two sets of equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L

∂θ p
= ∂L

∂q(t1)
P p(t1)

t1∫
t0

P p(t)−1 ∂T p

∂θ p
dt,

dP p(t)

dt
= ∂T p

∂ p
P p(t),

(A.9)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L

∂θq
= − ∂L

∂ p(t1)
P q(t1)

t1∫
t0

P q(t)
−1 ∂V q

∂θq
dt,

dP q(t)

dt
= −∂V q

∂q
P q(t).

(A.10)

However, the scale for solving P p and P q is still too large. We now consider the adjoint states ap(t) and aq(t):

ap(t) = ∂L

∂q(t1)
P p(t1)P p(t)−1, ap(t1) = ∂L

∂q(t1)
, (A.11)

and

aq(t) = ∂L

∂ p(t1)
P q(t1)P q(t)

−1, aq(t1) = ∂L

∂ p(t1)
. (A.12)

We can then rewrite the gradient of loss function regarding to θ p as

dL

dθ p
= ∂L

∂q(t1)
P p(t1)

t1∫
t0

P p(t)−1 ∂T p

∂θ p
dt =

t1∫
t0

ap(t)
∂T p

∂θ p
dt. (A.13)

Similarly, the gradient of loss function regarding to θq can be derived with the result differs by the sign

dL

dθq
= −

t1∫
t0

aq(t)
∂V q

∂θq
dt. (A.14)

We now want to derive the derivative of ap(t) and aq(t). The derivative of ap(t) can be derived as follows

dap

dt
= ∂L

∂q(t1)
P p(t1)

dP p(t)−1

dt

= − ∂L

∂q (t1)
P p (t1) P p(t)−1 dP p(t)

dt
P p(t)−1

= −ap(t)
dP p(t)

dt
P p(t)−1

= −ap(t)
∂T p

∂ p
.

(A.15)

The derivative of aq(t) can be found in a similar manner. We obtain that

daq

dt
= aq(t)

∂V q

∂q
. (A.16)

Combine the results we found in (A.11), (A.12), (A.13), (A.14), (A.15), and (A.16), we obtain the sets of equations that are
our final result⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂θ p
=

t1∫
t0

ap(t)
∂T p

∂θ p
dt,

dap

dt
= −ap(t)

∂T p

∂ p
,

ap(t1) = ∂L
,

(A.17)
∂q(t1)

18

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Fig. A.13. Prediction result of the pendulum problem using adjoint method as backward propagation.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂θq
= −

t1∫
t0

aq(t)
∂V q

∂θq
dt,

daq

dt
= aq(t)

∂V q

∂q
,

aq(t1) = ∂L

∂ p(t1)
.

(A.18)

Using (A.17) and (A.18), we calculate the gradients of loss function in the backward propagation.
Fig. A.13, shows the prediction result of the pendulum problem using the adjoint method as our backward propagation

method. We can see that the prediction result matches the ground truth well. However, training using the adjoint sensitivity
method is about 30 percent slower than training using the automatic differentiation method due to higher time complexity.

Appendix B. Loss function ablation test

We conduct the ablation test on the pendulum, the Lotka–Volterra, the Kepler, and the Hénon–Heiles problems to com-
pare the validation loss after convergence with different training loss functions in the training process. Fig. B.14 shows the
comparison of validation losses with different training loss functions in the training process of different problems validated

Fig. B.14. Comparisons of validation losses with different training loss functions for (a) the pendulum, (b) the Lotka–Volterra, (c) the Kepler, and (d) the
Hénon–Heiles problems validated by L1 loss function. The red dashed lines represent the networks trained by L1 loss function; the blue solid lines represent
the networks trained by MSE loss function. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
19

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Fig. B.15. Comparisons of validation losses with different training loss functions for (a) the pendulum, (b) the Lotka–Volterra, (c) the Kepler, and (d) the
Hénon–Heiles problems validated by MSE loss function. The red dashed lines represent the networks trained by L1 loss function; the blue solid lines
represent the networks trained by MSE loss function.

by L1 loss function. Fig. B.15 shows the comparison of validation losses with different training loss functions in the training
process of different problems validated by MSE loss function. We observe that for all problems, the validation loss with L1
is smaller than that with MSE after convergence. The better performance of L1 may be due to MSE loss’s high sensitivity to
outliers. This explains why we choose L1 loss function as our training loss function.

References

[1] W.R. Hamilton, On a general method in dynamics, Philos. Trans. R. Soc. 124 (1834) 247–308.
[2] V.S. Viswanath, G. Müller, The Recursion Method, vol. 23, Springer-Verlag, 1994.
[3] K. Feng, M. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, Springer, 2010.
[4] P.J. Morrison, Hamiltonian and action principle formulations of plasma physics, Phys. Plasmas 12 (2005) 058102.
[5] Y. Li, Y. He, J.N.Y. Sun, H. Qin, J. Liu, Solving the Vlasov–Maxwell equations using Hamiltonian splitting, J. Comput. Phys. 396 (2019) 381–399.
[6] R. Salmon, Hamiltonian fluid mechanics, Annu. Rev. Fluid Mech. 20 (1988) 225–256.
[7] D.G. Saari, Z. Xia, Hamiltonian Dynamics and Celestial Mechanics, 1 ed., American Mathematical Society, 1996.
[8] L.N. Hand, J.D. Finch, Analytical Mechanics, Cambridge University Press, 2008.
[9] C. Grigo, P.-S. Koutsourelakis, A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the small

data regime, J. Comput. Phys. 397 (2019) 108842.
[10] S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad.

Sci. USA 113 (2016) 3932–3937.
[11] P. Stinis, T. Hagge, A.M. Tartakovsky, E. Yeung, Enforcing constraints for interpolation and extrapolation in generative adversarial networks, J. Comput.

Phys. 397 (2019) 108844.
[12] S.L. Brunton, B.R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics, Annu. Rev. Fluid Mech. 52 (2020) 477–508.
[13] T.W. Hughes, I.A.D. Williamson, M. Minkov, S. Fan, Wave physics as an analog recurrent neural network, Sci. Adv. 5 (2019) 6946.
[14] J.M. Sellier, G.M. Caron, J. Leygonie, Signed particles and neural networks, towards efficient simulations of quantum systems, J. Comput. Phys. 387

(2019) 154–162.
[15] Q. Hernandez, A. Badias, D. Gonzalez, F. Chinesta, E. Cueto, Structure-preserving neural networks, arXiv:2004 .04653, 2020.
[16] G.H. Teicherta, A.R. Natarajanc, A.V. der Venc, K. Garikipati, Machine learning materials physics: integrable deep neural networks enable scale bridging

by learning free energy functions, Comput. Methods Appl. Mech. Eng. 353 (2019) 201–216.
[17] F. Regazzoni, L. Dedé, A. Quarteroni, Machine learning for fast and reliable solution of time-dependent differential equations, J. Comput. Phys. 397

(2019) 108852.
[18] S. Xiong, X. He, Y. Tong, R. Liu, B. Zhu, Roenets: predicting discontinuity of hyperbolic systems from continuous data, arXiv:2006 .04180, 2020.
[19] M. Raissi, G.E. Karniadakis, Hidden physics models: machine learning of nonlinear partial differential equations, J. Comput. Phys. 357 (2018) 125–141.
[20] G. Pang, L. Yang, G.E. Karniadakis, Neural-net-induced Gaussian process regression for function approximation and PDE solution, J. Comput. Phys. 384

(2019) 270–288.
[21] A. Holiday, M. Kooshkbaghi, J.M. Bello-Rivas, C.W. Gear, A. Zagaris, I.G. Kevrekidis, Manifold learning for parameter reduction, J. Comput. Phys. 392

(2019) 419–431.
[22] S.H. Rudy, S.L. Brunton, J.L. Proctor, J.N. Kutz, Data-driven discovery of partial differential equations, Sci. Adv. 3 (2017) e1602614.
20

http://refhub.elsevier.com/S0021-9991(21)00220-5/bib0016A3D370682BA3C5D44D10F9A68758s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibF80D776EA093F1FEEF4EA8751091BB0Es1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibD7AA434FE4893DC9D8695F87BF73098Es1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibC6A74675C51CC087384E49E63C0359E2s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib28AD17877E49D337FA599033D16A5138s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibDC3C6590505738A0E3057449B251EE4Es1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib8154252B933385383C9BCE3E4AF161D3s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib019042065133FD56D30B048E96F500B8s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib36D507C3743D5C3D4EF3C79E8940BE72s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib36D507C3743D5C3D4EF3C79E8940BE72s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibE79AC1B3E9CD053DF948134F3AE5E344s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibE79AC1B3E9CD053DF948134F3AE5E344s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib8A8FC18F0E35054705FF2DBCFEF5F7D8s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib8A8FC18F0E35054705FF2DBCFEF5F7D8s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibBCAF3F7D4CAFBFBEF3C34CCD99B1A3EEs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibFB94486C827C35EE2182A18E612E1711s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibBE9B3D0032C8BEEDE1D887F68FBFF165s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibBE9B3D0032C8BEEDE1D887F68FBFF165s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib943E1FA0E1CB0FDD299C9742ADD68995s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibFCDA10927B192C809DC5145C98D7CECEs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibFCDA10927B192C809DC5145C98D7CECEs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib612993FB939C5A0BF39240F707E7866Bs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib612993FB939C5A0BF39240F707E7866Bs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibF3EF3BB0A03A9A77FC0D8ECDE498A874s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibC770C9C03E68381026BEA670E4CE6D89s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibF2976CC976CA7ED752F40FD3F26D5484s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibF2976CC976CA7ED752F40FD3F26D5484s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib648FDEC921D82F26D56AC0E1558243BAs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib648FDEC921D82F26D56AC0E1558243BAs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibDF7CF492B6917AC9905B7820556B6DD2s1

Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
[23] J. Sirignano, K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 686–707.
[24] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[25] M. Gulian, M. Raissi, P. Perdikaris, G. Karniadakis, Machine learning of space-fractional differential equations, SIAM J. Sci. Comput. 41 (4) (2018)

A248–A2509.
[26] M. Raissi, P. Perdikaris, G.E. Karniadakis, Inferring solutions of differential equations using noisy multi-fidelity data, J. Comput. Phys. 335 (2017)

736–746.
[27] J. Feliu-Faba, Y. Fan, L. Ying, Meta-learning pseudo-differential operators with deep neural networks, J. Comput. Phys. 408 (2020) 109309.
[28] Y. Fan, C.O. Bohorquez, L. Ying, Bcr-net: a neural network based on the nonstandard wavelet form, J. Comput. Phys. 384 (2019) 1–15.
[29] A.T. Mohan, N. Lubbers, D. Livescu, M. Chertkov, Embedding hard physical constraints in convolutional neural networks for 3d turbulence, in: Interna-

tional Conference on Learning Representations, 2020.
[30] S. Xiong, X. He, Y. Tong, B. Zhu, Neural vortex method: from finite Lagrangian particles to infinite dimensional Eulerian dynamics, arXiv:2006 .04178,

2020.
[31] J. Ling, R. Jones, J. Templeton, Machine learning strategies for systems with invariance properties, J. Comput. Phys. 318 (2016) 22–35.
[32] Z. Geng, D. Johnson, R. Fedkiw, Coercing machine learning to output physically accurate results, J. Comput. Phys. 406 (2020) 109099.
[33] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, S. Ho, Lagrangian neural networks, arXiv:2003 .04630, 2020.
[34] S. Greydanus, M. Dzamba, J. Yosinski, Hamiltonian neural networks, in: Conference on Neural Information Processing Systems, 2019, pp. 15379–15389.
[35] P. Jin, A. Zhu, G.E. Karniadakis, Y. Tang, Symplectic networks: intrinsic structure-preserving networks for identifying Hamiltonian systems, arXiv:2001.

03750, 2020.
[36] Y.D. Zhong, B. Dey, A. Chakraborty, Symplectic ode-net: learning Hamiltonian dynamics with control, in: International Conference on Learning Repre-

sentations, 2020.
[37] D.M. DiPietro, S. Xiong, B. Zhu, Sparse symplectically integrated neural networks, in: Conference on Neural Information Processing Systems, 2020.
[38] S. Xiong, Y. Tong, X. He, C. Yang, S. Yang, B. Zhu, Nonseparable symplectic neural networks, arXiv:2010 .12636, 2020.
[39] E. Hairer, S. Nørsett, G. Wanner, Solving Ordinary Differential Equations I – Nonstiff Problems, Springer, 1987.
[40] C. Runge, Ueber die numerische auflösung von differentialgleichungen, Math. Ann. 46 (1895) 167–178.
[41] W. Kutta, Beitrag zur näherungsweisen integration totaler differentialgleichungen, Z. Math. Phys. 46 (1901) 435–453.
[42] R.T.Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, in: Conference on Neural Information Processing Systems,

2018, pp. 6571–6583.
[43] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, USA, 2016, pp. 770–778.
[44] E. Forest, R.D. Ruth, Fourth-order symplectic integration, Physica D 43 (1990) 105–117.
[45] A. Zhu, P. Jin, Y. Tang, Deep Hamiltonian networks based on symplectic integrators, arXiv:2004 .13830, 2020.
[46] A. Zhu, P. Jin, Y. Tang, Inverse modified differential equations for discovery of dynamics, arXiv:2009 .01058, 2020.
[47] Z. Chen, J. Zhang, M. Arjovsky, L. Bottou, Symplectic recurrent neural networks, in: International Conference on Learning Representations, 2020.
[48] P. Toth, D.J. Rezende, A. Jaegle, S. Racaniére, A. Botev, I. Higgins, Hamiltonian generative networks, in: International Conference on Learning Represen-

tations, 2020.
[49] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A 150 (1990) 262–268.
[50] J. Candy, W. Rozmus, A symplectic integration algorithm for separable Hamiltonian functions, J. Comput. Phys. 92 (1991) 230–256.
[51] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: International Conference on Learning Representations, 2015.
[52] P. Battaglia, R. Pascanu, M. Lai, D.J. Rezende, et al., Interaction networks for learning about objects, relations and physics, in: Advances in Neural

Information Processing Systems, 2016, pp. 4502–4510.
[53] A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia, Hamiltonian graph networks with ode integrators, preprint, arXiv:1909 .12790, 2019.
21

http://refhub.elsevier.com/S0021-9991(21)00220-5/bib98EC66EC4C3104F37636553C6AE295B7s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib231A287367CFEE39E4657EA7B54D6F4As1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib231A287367CFEE39E4657EA7B54D6F4As1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib939B34F581187C32F458C09E9AA275E2s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib939B34F581187C32F458C09E9AA275E2s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib594326995B32A66370DECE27F6C12EEFs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib594326995B32A66370DECE27F6C12EEFs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib7A34294D0AB2D94941AF2AF8AF3FB8F1s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib02B1E9A0FE11EF557751D1E00B4013AEs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib3C75A60755CDDF589E67F78B38E16830s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib3C75A60755CDDF589E67F78B38E16830s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib5219F0BB53991BB0403A11AFF7414321s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib5219F0BB53991BB0403A11AFF7414321s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibC222D85E0390DCA2C8375EB24F768EF9s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib37685BA9D55093362965351CDAA3C563s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib8C74DDB27DD55619CE83AC84032071F4s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibD713F5980B62858E59FCA9DE50E57757s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib7C81233241B27E6F2C583B7FF2B74689s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib7C81233241B27E6F2C583B7FF2B74689s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibA01723FE87131757471820BACF12F8DCs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibA01723FE87131757471820BACF12F8DCs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib7BA7F82D412C0DC5756C69D9E7B6B155s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib270873ECA513E7C5AA94383F55B78476s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibFA0B7F49FC834409325B6AE6A631E581s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibEDB895E07FD80A26BACBAA65CF1E84D3s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib52AA7FC698874D27B0B72727C5E2C806s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib79D9E1AFE4E52DB80EC08FAFC23D2734s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib79D9E1AFE4E52DB80EC08FAFC23D2734s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibBEFE06EC7E39A48D97F0025B21869F65s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib1A6109A7A28A81127F0E92E3CD285146s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib080CDEE60DB70EB0C3B647A864E7FE23s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib9BC89481AB2ED93F6676445A41F8B57Bs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib05D7371E36C8F12B396CBE40F450A706s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib05D7371E36C8F12B396CBE40F450A706s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib4A8F3E6D7A06476EE7EC2004165D3AFEs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib2ACBA419E6E0AD46A54755E3D85EDD50s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib0DE3F16E0BC4C9E7F08E3596878602C9s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib0DE3F16E0BC4C9E7F08E3596878602C9s1
http://refhub.elsevier.com/S0021-9991(21)00220-5/bib1D98439E643F775BB2D744C788692B0Fs1

	Symplectic neural networks in Taylor series form for Hamiltonian systems
	1 Introduction
	2 Mathematical foundation
	2.1 Hamiltonian mechanics
	2.2 A symmetric network in Taylor expansion form
	2.3 Symplectic Taylor neural networks

	3 Numerical methods and results
	3.1 Dataset generation
	3.2 Test cases
	3.3 Training settings and ablation tests
	3.4 Taylor series vs. ReLU
	3.5 Predictive ability and robustness
	3.6 Training sample size and convergence rate

	4 High-dimensional systems
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Adjoint method
	Appendix B Loss function ablation test
	References

