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We propose an effective and light-weight learning algorithm, Symplectic Taylor Neural 
Networks (Taylor-nets), to conduct continuous, long-term predictions of a complex Hamil-
tonian dynamic system based on sparse, short-term observations. At the heart of our 
algorithm is a novel neural network architecture consisting of two sub-networks. Both are 
embedded with terms in the form of Taylor series expansion designed with symmetric 
structure. The key mechanism underpinning our infrastructure is the strong expressiveness 
and special symmetric property of the Taylor series expansion, which naturally accommo-
date the numerical fitting process of the gradients of the Hamiltonian with respect to the 
generalized coordinates as well as preserve its symplectic structure. We further incorporate 
a fourth-order symplectic integrator in conjunction with neural ODEs’ framework into our 
Taylor-net architecture to learn the continuous-time evolution of the target systems while 
simultaneously preserving their symplectic structures. We demonstrated the efficacy of our 
Taylor-net in predicting a broad spectrum of Hamiltonian dynamic systems, including the 
pendulum, the Lotka–Volterra, the Kepler, and the Hénon–Heiles systems. Our model ex-
hibits unique computational merits by outperforming previous methods to a great extent 
regarding the prediction accuracy, the convergence rate, and the robustness despite using 
extremely small training data with a short training period (6000 times shorter than the 
predicting period), small sample sizes, and no intermediate data to train the networks.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Hamiltonian mechanics, first formulated by William Rowan Hamilton in 1834 [1], is one of the most fundamental math-
ematical tools for analyzing the long-term behavior of complex physical systems studied over the past centuries [2,3]. 
Hamiltonian systems are ubiquitous in nature, exhibiting total energy with various forms, as seen in plasma physics [4], 
electromagnetic physics [5], fluid mechanics [6], and celestial mechanics [7]. Mathematically, Hamiltonian dynamics de-
scribe a physical system by a set of canonical coordinates, i.e., generalized positions and generalized momentum, and uses 
the conserved form of the symplectic gradient to drive the temporal evolution of these canonical coordinates [8]. However, 
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for a dynamic system governed by some unknown mechanics, it is challenging to identify the Hamiltonian quantity and its 
corresponding symplectic gradients by directly observing the system’s state, especially when such observation is partial and 
the sample data is sparse [9–11].

The rapid advent of machine learning (ML) techniques opens up new possibilities to solve the identification problems of 
physical systems by statistically exploring their underlying structures. On the one hand, data-driven approaches have proven 
their efficacy in uncovering the underlying governing equations of a variety of physical systems, encompassing applications 
in fluid mechanics [12], wave physics [13], quantum physics [14], thermodynamics [15], and material science [16]. On the 
other hand, various ML methods have been proposed to boost the numerical simulation of complex dynamical systems by 
incorporating learning paradigms into simulation infrastructures, e.g., ordinary differential equations [17], linear or nonlin-
ear partial differential equations [18,17,19–22], high-dimensional partial differential equations [23], inverse problems [24], 
space-fractional differential equations [25], systems with noisy multi-fidelity data [26], and pseudo-differential operators 
[27,28], to name a few. More recently, many lines of research have tried to incorporate physical priors into the learning 
framework, instead of letting the learning algorithm start from scratch, e.g., embedding the notion of an incompressible 
fluid [29,30], the Galilean invariance [31], a quasistatic physics simulation [32], and the invariant quantities in Lagrangian 
systems [33] and Hamiltonian systems [15,34–38].

There are two critical aspects in learning and predicting the dynamics of a Hamiltonian system. The first key point 
is to learn the continuous dynamic time evolution. It is impossible to control the growth of approximation error and 
monitor the level of error by simply using neural networks to learn the dynamics of a system and integrating using 
traditional integrators, e.g., Euler [39], Runge–Kutta [40,41]. Secondly and also more challengingly, finding the symplectic 
gradients that have symmetric structure is hard. The exact solution of a Hamiltonian system leads to a symplectic map 
from the initial conditions to an arbitrary present state. Due to inaccuracies arising from the computed gradients of a high-
dimensional Hamiltonian using traditional neural networks, finding the exact structure of the symplectic gradients from 
non-differentiable functions will often cause a large error. To address these two critical aspects, we propose the following 
solutions. Firstly, we utilize the neural ODE (ODE-net)’s framework, introduced by Chen et al. in 2018, [42], to obtain the 
continuous evolution. Drawing parallels between residual neural networks [43] and the modeling pattern of an ODE, Chen 
et al. utilize continuously-defined dynamics to naturally incorporate data that arrive at arbitrary times. The main difficulty 
lies in addressing the second aspect. To preserve symplectic structure while accurately approximating the continuous-time 
evolution of dynamical systems, the neural networks have to fulfill two criteria:

1. The gradients of the Hamiltonian with respect to the generalized coordinates should be symmetric.
2. The temporal integration should be symplectic.

We made two essential contributions to meet the above two criteria when processing a Hamiltonian system by in-
corporating a set of special computing primitives into traditional neural networks. First, to enable symmetric gradients of 
the Hamiltonian with respect to the generalized coordinates, we construct neural networks that model the gradients and 
preserve their symmetric structure. Due to the multi-nonlinear-layer architecture of traditional deep neural networks, it is 
impossible for these networks to fulfill the symmetric property. Thus, we can only use a three-layer network with the form 
of linear-activation-linear, where the weights of the two linear layers are the transpose of each other. However, such a shal-
low network cannot capture the complexity of Hamiltonian systems. Therefore, in order to maintain the expressive power 
of the network, we create multiple such three-layer sub-networks and combine them linearly into the Taylor series form. 
As a result, our network architecture naturally preserves the symmetry of the structure while exhibiting strong expressive 
power. Furthermore, to enable a symplectic preserving temporal evolution, we implement a fourth-order symplectic integra-
tor [44,45] within a neural ODE-net architecture [42,46]. This fourth-order integration step enables an explicit fourth-order 
symplectic mapping to preserve the canonical character of the equations of motion in an exact manner. In other words, 
it preserves the property that the temporal evolution of a Hamiltonian system yields a canonical transformation from the 
initial conditions to the final state [44].

Based on these two major enhancements, we propose a novel neural network model, symplectic Taylor neural networks 
(Taylor-nets), to precisely preserve the quantity and predict the dynamics of a Hamiltonian system. The Taylor-nets consist 
of two sub-networks whose outputs are combined using a fourth-order symplectic integrator. Both sub-networks are em-
bedded with the form of Taylor series expansion and learn gradients of the position and momentum of the Hamiltonian 
system, respectively. We design the sub-networks such that each term of the Taylor series expansion is symmetric. The 
symmetric property of the terms and the fourth-order symplectic integrator ensure our model intrinsically preserves the 
symplectic structure of the underlying system. Therefore, the prediction made by our neural networks leads to a symplectic 
map from an initial condition to the present state of a Hamiltonian system, which is the most fundamental feature of the 
exact solution of a Hamiltonian system.

With the integrated design of the sub-networks symmetric structure and the fourth-order symplectic integrator, our 
learning algorithm is capable of utilizing extremely limited training data to generate highly accurate predictive results 
that satisfy the conservation laws in various forms. In particular, we demonstrate that the training period of our model 
can be around 6000 times shorter than its predicting period (other methods have the training period 1–25 times shorter 
than the predicting period [42,34,35]), and the number of training samples is around 5 times smaller (meaning we use 
5 times fewer time-sequences as in the training process) than that used by other methods. Moreover, our method only 
2
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requires the data collected at the two endpoints of the training period to train the neural networks, without requiring any 
intermediate data samples in between the initial point and the endpoint. These improvements are crucial for modeling 
a realistic, complex physical system because they minimize the requirement of training data, which are typically difficult 
to obtain, and reduce training time by a significant amount. Other major computational merits of our proposed method 
include its fast convergence rate and robustness. Thanks to the intrinsic structure-preserving characteristic of our method, 
our model converges more than 10 times faster than the other methods and is more robust under large noise. Overall, the 
contributions of our work can be summarized as below:

• We design a neural network architecture that intrinsically preserves the symplectic structure of the underlying system 
and predicts the continuous-time evolution of a Hamiltonian system.

• We embed the form of Taylor series expansion into the neural networks with each term of the Taylor series expansion 
designed to be symmetric.

• Our model outperforms other state-of-the-art methods regarding the prediction accuracy, the convergence rate, and the 
robustness despite using small data with a short training period, small sample sizes, and no intermediate data to train 
the model.

Our work is inspired by previous methodologies that incorporate the symplectic structure of a Hamiltonian system into 
neural networks. Greydanus et al. first tried to enforce conservative features of the Hamiltonian system by reformulating 
the loss function using Hamilton’s equations, known as Hamiltonian neural networks (HNNs) [34]. Based on HNNs, many 
works were developed. Chen et al. developed symplectic recurrent neural networks (SRNN), which is a recurrent HNN that 
relies on a symplectic integrator [47]. Toth et al. developed the Hamiltonian Generative Network (HGN), learning Hamilto-
nian dynamics from high-dimensional observations (such as images) without restrictive domain assumptions [48]. Zhong 
introduced Symplectic ODE-Net (SymODEN), which adds an external control term to the standard Hamiltonian dynamics in 
order to learn the system dynamics which conform to Hamiltonian dynamics with control [36]. Methods like HNN, which 
focuses on the reformulation of the loss function, incur two main limitations. On the one hand, it requires the temporal 
derivatives of the momentum and the position of the systems to calculate the loss function, which is difficult to obtain 
from real-world systems. On the other hand, HNN doesn’t strictly preserve the symplectic structure, because its symplecto-
morphism is realized by its loss function rather than its intrinsic network architecture. Our model successfully bypasses the 
time derivatives of the datasets by incorporating an integrator solver into the network architecture. Moreover, we design our 
model differently by embedding a symmetric structure into the neural networks, instead of manipulating the loss function. 
Thus, our model can strictly preserve the symplectic structure.

Independently, an intrinsic way to encode the symplectic structure is introduced by Jin et al. [35]. Such neural networks 
are called Symplectic networks (SympNets), which intrinsically preserve the symplectic structure for identifying Hamiltonian 
systems. Motivated by SympNets, we invent a neural network architecture to intrinsically preserve the symplectic structure. 
However, our model preserves two major advantages over SympNets. First, our model is capable of learning the continuous-
time evolution of dynamical systems. Second, our model can easily be extended to N-body systems. The parameters scale in 
the matrix map for training N dimensional Hamiltonian system of our model is O (1). The number of parameters does not 
increase since based on the interactive models between particle pairs we only need data collected from two bodies as the 
training data to predict the dynamics of many bodies. However, SympNets require O (N2) complexity, which makes it hard 
to generalize to the high-dimensional N-body problems.

The structure of this paper is as follows. In section 2, we will first introduce the mathematical formulas and their proofs 
that serve as the foundation of our methodology. Then, we will discuss the design of our neural networks in Taylor series 
form as well as the proofs of their symplectic structure-preserving property. The next section 3 describes the implementa-
tion details and numerical results, which compare our methodology with other state-of-the-art methods, such as ODE-net 
and HNN. In section 4, we extend the application of our methodology to solve an N-body problem. Lastly, conclusions are 
drawn in a section 5 with discussions of potential directions of our future research.

2. Mathematical foundation

2.1. Hamiltonian mechanics

We start by considering a Hamiltonian system with N pairs of canonical coordinates (i.e. N generalized positions and 
N generalized momentum). The time evolution of canonical coordinates is governed by the symplectic gradient of the 
Hamiltonian [8]. Specifically, the time evolution of the system is governed by Hamilton’s equations as⎧⎪⎪⎨

⎪⎪⎩
dq

dt
= ∂H

∂ p
,

dp

dt
= −∂H

∂q
,

(1)

with the initial condition
3
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(q(t0), p(t0)) = (q0, p0). (2)

In a general setting, q = (q1, q2, · · · , qN) represents the positions and p = (p1, p2, ...pN ) denotes their momentum. 
Function H = H(q, p) is the Hamiltonian, which corresponds to the total energy of the system. By assuming that the 
Hamiltonian is separable, we can rewrite the Hamiltonian in the form

H(q, p) = T (p) + V (q). (3)

This happens frequently in Hamiltonian mechanics, with T being the kinetic energy and V the potential energy. Substituting 
(3) into (1) yields⎧⎪⎪⎨

⎪⎪⎩
dq

dt
= ∂T (p)

∂ p
,

dp

dt
= −∂V (q)

∂q
.

(4)

This set of equations is fundamental in designing our neural networks. Our model will learn the right-hand side (r.h.s.) of 
(4) under the framework of ODE-net.

One of the important features of the time evolution of Hamilton’s equations is symplectomorphism, which represents a 
transformation of phase space that is volume-preserving. In the setting of canonical coordinates, symplectomorphism means 
the transformation of the phase flow of a Hamiltonian system conserves the symplectic two-form

dp ∧ dq ≡
N∑

j=1

(
dp j ∧ dq j

)
, (5)

where ∧ denotes the wedge product of two differential forms. Inspired by the symplectomorphism feature, we aim to 
construct a neural network architecture that intrinsically preserves Hamiltonian structure.

2.2. A symmetric network in Taylor expansion form

In order to learn the gradients of the Hamiltonian with respect to the generalized coordinates, we propose the following 
underpinning mechanism, which is a set of symmetric networks that learn the gradients of the Hamiltonian with respect to 
the generalized coordinates.⎧⎪⎪⎨

⎪⎪⎩
T p(p, θ p) → ∂T (p)

∂ p
,

V q(q, θq) → ∂V (q)

∂q
,

(6)

with parameters (θ p, θq) that are designed to learn the r.h.s. of (4), respectively. Here, the “→” represents our attempt to 
use the left-hand side (l.h.s.) to learn the r.h.s. Substituting (6) into (4) yields⎧⎪⎪⎨

⎪⎪⎩
dq

dt
= T p(p, θ p),

dp

dt
= −V q(q, θq).

(7)

Therefore, under the initial condition (2), the trajectories of the canonical coordinates can be integrated as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0 +
t∫

t0

T p(p, θ p)dt,

p(t) = p0 −
t∫

t0

V q(q, θq)dt.

(8)

From (6), we obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂T p(p, θ p)

∂ p
→ ∂2T (p)

∂ p2
,

∂V q(q, θq) → ∂2 V (q)

2
.

(9)
∂q ∂q

4
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Fig. 1. The schematic diagram of T p(p, θ p) in Taylor-net.

The r.h.s. of (9) are the Hessian matrix of T and V respectively, so we can design T p(p, θ p) and V q(q, θq) as symmetric 
mappings, that are

∂T p(p, θ p)

∂ p
=

[
∂T p(p, θ p)

∂ p

]T

, (10)

and

∂V q(q, θq)

∂q
=

[
∂V q(q, θq)

∂q

]T

. (11)

Due to the multiple nonlinear layers in the construction of traditional deep neural networks, it is impossible for these 
deep neural networks to fulfill (10) and (11). Therefore, we can only use a three-layer network with the form of linear-
activation-linear, where the weights of the two linear layers are the transpose of each other, and in order to still maintain 
the expressive power of the networks, we construct symmetric nonlinear terms, as same as the terms of a Taylor polynomial, 
and combine them linearly. Specifically, we construct a symmetric network T p(p, θ p) as

T p(p, θ p) =
(

M∑
i=1

AT
i ◦ f i ◦ Ai − BT

i ◦ f i ◦ B i

)
◦ p + b, (12)

where ‘◦’ denotes the function composition, Ai and B i are fully connected layers with size Nh × N , b is a N dimensional 
bias, M is the number of terms in the Taylor series expansion, and f i is an element-wise function, representing the ith order 
term in the Taylor polynomial

f i(x) = 1

i! xi . (13)

Fig. 1 plots a schematic diagram of T p(p, θ p) in Taylor-net. The input of T p(p, θ p) is p, and θ p = (Ai , B i, b). We construct 
a negative term BT

i ◦ f i ◦ B i following a positive term AT
i ◦ f i ◦ Ai , since two positive semidefinite matrices with opposite 

signs can represent any symmetric matrix.
To prove (12) is symmetric, that is it fulfills (10), we introduce Theorem 2.1.

Theorem 2.1. The network (12) satisfies (10).

Proof. From (12), we have

∂T p(p, θ p)

∂ p
=

M∑
i=1

AT
i �A

i Ai − BT
i �B

i B i, (14)

with

�A
i = diag

⎛
⎝d f

dx

∣∣∣∣∣
x=Ai◦p

⎞
⎠ , (15)

and

�B
i = diag

⎛
⎝d f

dx

∣∣∣∣∣
x=B i◦p

⎞
⎠ . (16)

It’s easy to see that (14) is a symmetric matrix that satisfies (10). �

5
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In fact, T p(p, θ p) in (10) and V q(q, θq) in (11) satisfy the same property, so we construct Vq with the similar form as

V q(q, θq) =
(

M∑
i=1

C T
i ◦ f i ◦ C i − DT

i ◦ f i ◦ D i

)
◦ q + d. (17)

Here, C i , D i , and d have the same structure as (12), and (C i , D i, d) = θq .

2.3. Symplectic Taylor neural networks

Next, we substitute the constructed network (12) and (17) into (8) to learn the Hamiltonian system (4). We employ 
ODE-net [42] as our computational infrastructure. Here we briefly introduce the essential idea of ODE-net for completeness. 
Under the perspective of viewing a neural network as a dynamic system, we can treat the chain of residual blocks in a 
neural network as the solution of an ODE with the Euler method. Given a residual network that consists of sequence of 
transformations

ht+1 = ht + f (ht, θt), (18)

the idea is to parameterize the continuous dynamics using an ODE specified by a neural network:

dh(t)

dt
= f (ht, t, θ). (19)

Algorithm 1 Integrate (8) by using the fourth-order symplectic integrator.
Input: q0, p0, t0, t, �t ,

F j
t in (20) and F j

k in (21) with j = 1, 2, 3, 4;
Output: q(t), p(t)

n = floor[(t − t0)/�t];
for i = 1, n

(k0
p , k0

q) = (pi−1, qi−1);
for j = 1, 4

(t j−1
p , t j−1

q ) = F j
t (k j−1

p , k j−1
q , �t),

(k j
p , k j

q) = F j
k(t

j−1
p , t j−1

q , �t),
end
(pi , qi) = (k4

p, k4
q );

end
q(t) = qn, p(t) = pn .

Inspired by the idea of ODE-net, we design neural networks that can learn continuous time evolution. In Hamiltonian 
system (4), where the coordinates are integrated as (8), we can implement a time integrator to solve for p and q. While 
ODE-net uses fourth-order Runge–Kutta method to make the neural networks structure-preserving, we need to implement 
an integrator that is symplectic. Therefore, we introduce Taylor-net, in which we design the symmetric Taylor series ex-
pansion and utilize the fourth-order symplectic integrator to construct neural networks that are symplectic to learn the 
gradients of the Hamiltonian with respect to the generalized coordinates and ultimately the temporal integral of a Hamilto-
nian system.

For the constructed networks (12) and (17), we integrate (8) by using the fourth-order symplectic integrator [44]. Specif-
ically, we will have an input layer (q0, p0) at t = t0 and an output layer (qn, pn) at t = t0 + ndt . The recursive relations of 
(qi, pi), i = 1, 2, · · · , n, can be expressed by the Algorithm 1. The input function in Algorithm 1 are

F j
t (p,q,dt) = (

p,q + c j T p(p, θ p)dt
)
, (20)

and

F j
k(p,q,dt) = (

p − d j V q(q, θq)dt,q
)
, (21)

with

c1 = c4 = 1

2(2 − 21/3)
, c2 = c3 = 1 − 21/3

2(2 − 21/3)
,

d1 = d3 = 1

2 − 21/3
, d2 = − 21/3

2 − 21/3
, d4 = 0.

(22)

The derivation of the coefficients c j and d j can be found in [44,49,50]. Relationships (20) and (21) are obtained by replacing 
∂T (p)/∂ p and ∂V (q)/∂q in the fourth-order symplectic integrator with deliberately designed neural networks T p(p, θ p)

and V q(q, θq), respectively. Fig. 2 plots a schematic diagram of Taylor-net which is described by Algorithm 1. The input of 
6
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Fig. 2. The schematic diagram of Taylor-net. The input of Taylor-net is (q0, p0), and the output is (qn, pn). Taylor-net consists of n iterations of fourth-order 
symplectic integrator. The input of the integrator is (qi−1, pi−1), and the output is (qi , pi). The four intermediate variables t0

p · · · t4
p and k0

q · · ·k4
q show that 

the scheme is fourth-order.

Taylor-net is (q0, p0), and the output is (qn, pn). Taylor-net consists of n iterations of fourth-order symplectic integrator. The 
input of the integrator is (qi−1, pi−1), and the output is (qi, pi). Within the integrator, the output of T p is used to calculate 
q, while the output of V q is used to calculate p, which is signified by the shoelace-like pattern in the diagram. The four 
intermediate variables t0

p · · · t4
p and k0

q · · ·k4
q indicate that the scheme is fourth-order.

By constructing the network T p(p, θ p) in (12) that satisfies (10), we show that Theorem 2.2 holds, so the network (20)
preserves the symplectic structure of the system.

Theorem 2.2. For a given dt, the mapping F j
t (:, :, dt) :R2N →R2N in (20) is a symplectomorphism if and only if the Jacobian of T p

is a symmetric matrix, that is, it satisfies (10).

Proof. Let

(t p, tq) = F j
t (kp,kq,dt). (23)

From (20), we have

dt p ∧ dtq = dkp ∧ dkq+
1

2

N∑
l,m=1

c jdt

[
∂T p(kp, θ p)

∂kp

∣∣∣∣∣
l,m

− ∂T p(kp, θ p)

∂kp

∣∣∣∣∣
m,l

]
dkp|l ∧ dkq|m.

(24)

Here A|l,m refers to the entry in the l-th row and m-th column of a matrix A, x|l refers to the l-th component of vector 
x. From (24), we know that dt p ∧ dtq = dkp ∧ dkq is equivalent to

∂T p(kp, θ p)

∂kp

∣∣∣∣∣
l,m

− ∂T p(kp, θ p)

∂kp

∣∣∣∣∣
m,l

= 0, ∀l,m = 1,2, · · · , N, (25)

which is (10). �
Similar to the Theorem 2.2, we can find the relationship between F j

k and the Jacobian of V q . The proof of 2.3 is omitted 
as it is similar to the proof of the Theorem 2.2.

Theorem 2.3. For a given dt, the mapping F j
k(:, :, dt) :R2N →R2N in (21) is a symplectomorphism if and only if the Jacobian of V q

is a symmetric matrix, that is, it satisfies (11).

Suppose that �1 and �2 are two symplectomorphisms. Then, it is easy to show that their composite map �2 ◦ �1 is 
also symplectomorphism due to the chain rule. Thus, the symplectomorphism of the Algorithm 1can be guaranteed by the 
Theorems 2.2 and 2.3.

3. Numerical methods and results

This section discusses the details of our implementation, including the numerical method to generate training data, the 
construction of the neural networks, and the predictions for arbitrary time points on a continuous timeline.
7
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3.1. Dataset generation

To make a fair comparison with the ground truth, we generate our training and testing datasets by using the same nu-
merical integrator based on a given analytical Hamiltonian. In the learning process, we generate Ntrain training samples, and 
for each training sample, we first pick a random initial point (q0, p0) (input), then use the symplectic integrator discussed 
in section 2.1 to calculate the value (qn, pn) (target) of the trajectory at the end of the training period Ttrain . We do the 
same to generate a validation dataset with Nvalidation = 100 samples and the same time span as Ttrain and calculate the 
validation loss Lvalidation along the training loss Ltrain to evaluate the training process. In addition, we generate a set of 
testing data with Ntest = 100 samples and predicting time span T predict that is around 6000 times larger and calculate the 
prediction error εp to evaluate the predictive ability of the model. For simplicity, we use (p̂n, ̂qn) to represent the predicted 
values using our trained model.

We remark that our training dataset is relatively smaller than that used by the other methods. Most of the methods, e.g. 
ODE-net [42] and HNN [34], have to rely on intermediate data in their training data to train the model. That is the dataset 
is [(q(s)

0 , p(s)
0 ), (q(s)

1 , p(s)
1 ), . . . , (q(s)

n−1, p
(s)
n−1), (q(s)

n , p(s)
n )]Ntrain

s=1 , where (q(s)
1 , p(s)

1 ) . . . , (q(s)
n−1, p

(s)
n−1) are n − 1 intermediate points 

collected within Ttrain in between (q(s)
0 , p(s)

0 ) and (q(s)
n , p(s)

n ). On the other hand, we only use two data points per sample, 

the initial data point and the end point, and our dataset looks like 
[
(q(s)

0 , p(s)
0 ), (q(s)

n , p(s)
n )

]Ntrain

s=1
, which is n −1 times smaller 

the dataset of the other methods, if we do not count (q(s)
0 , p(s)

0 ). Our predicting time span T predict is around 6000 times the 
training period used in the training dataset Ttrain (as compared to 10 times in HNN). This leads to a 600 times compression 
of the training data, in the dimension of temporal evolution. Note that we fix Ttrain and T predict in practice so that we 
can train our network more efficiently on GPU. One can also choose to generate training data with different Ttrain for each 
sample to obtain more robust performance.

3.2. Test cases

We consider the pendulum, the Lotka–Volterra, the Kepler, and the Hénon–Heiles systems in our implementation.

Pendulum system. The Hamiltonian of an ideal pendulum system is given by

H(q, p) = 1

2
p2 − cos (q). (26)

We pick a random initial point for training (q0, p0) ∈ [−2,2] × [−2,2].

Lotka–Volterra system. For a Lotka–Volterra system, its Hamiltonian is given by

H(q, p) = p − ep + 2q − eq. (27)

Similarly, we pick a random initial point for training (q0, p0) ∈ [−2,2] × [−2,2].

Kepler system. Now we consider a eight-dimensional system, a two-body problem in 2-dimensional space. Its Hamiltonian 
is given by

H(q, p) =H(q1,q2,q3,q4, p1, p2, p3, p4) = 1

2
(p2

1 + p2
2 + p2

3 + p2
4) − 1√

q2
1 + q2

2 + q2
3 + q2

4

, (28)

where (q1, q2) and (p1, p2) are the position and momentum associated with the first body, (q1, q2) and (p3, p4) are the 
position and momentum associated with the second body. We randomly pick the initial training point (q0, p0) ∈ [−3,3] ×
[−2,2], and enforce a constraint on the initial (q1, q2) and (p1, p2) so that they are at least separated by some distance 
Ld = 4. This is to avoid having infinite force immediately.

Hénon–Heiles system. Lastly, we introduce a four-dimensional Hénon–Heiles system, which is a non-integrable system. This 
kind of chaotic system is generally hard to model. Its Hamiltonian is defined as

H(q, p) =H(q1,q2, p1, p2) = 1

2
(p2

1 + p2
2) + 1

2
(q2

1 + q2
2) + (q2

1q2 − q3
2

3
). (29)

The random initial point for training is (q0, p0) ∈ [−0.5,0.5] × [−0.5,0.5].
8
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Table 1
Set-up of problems.

Problems Pendulum Lotka-Volterra Kepler Hénon–Heiles

Hamiltonian (26) (27) (28) (29)
Ttrain 0.01 0.01 0.01 0.01
T predict 20π 20π 20π 10
Ntrain 15 25 25 25
Epoch 100 150 50 100
Learning rate 0.002 0.003 0.001 0.001
step_size 10 10 10 10
γ 0.8 0.8 0.8 0.8
M 8 8 20 12
Nh 16 8 8 16
Ltrain 2.75 × 10−5 2.37 × 10−5 7.29 × 10−5 9.24 × 10−6

Lvalidation 1.39 × 10−4 6.73 × 10−5 6.41 × 10−5 9.44 × 10−6

3.3. Training settings and ablation tests

For all four systems, we use the Adam optimizer [51]. We choose the automatic differentiation method as our backward 
propagation method. We have tried both the adjoint sensitivity method, which is used in ODE-net [42] and the automatic 
differentiation method. Both methods can be used to train the model well. However, we found that using the adjoint 
sensitivity method is much slower than using the automatic differentiation method considering the large parameter size of 
neural networks. Therefore, we use the automatic differentiation method in our implementation. The detailed derivation of 
adjoints formulas under the setting of Taylor-net and the prediction result can be found in Appendix A.

All Ai and Bi in (12) are initialized as Ai, Bi ∼N(0, 
√

2/[N ∗ Nh ∗ (i + 1)]), where N is the dimension of the system and 
Nh is the size of the hidden layers. The loss function is

Ltrain = 1

Ntrain

Ntrain∑
s=1

‖p̂(s)
n − p(s)

n ‖1 + ‖q̂(s)
n − q(s)

n ‖1. (30)

The validation loss Lvalidation is the same as (30) but with dataset different from the training dataset. We choose L1 loss, 
instead of Mean Square Error (MSE) loss because L1 loss performs better in all cases given in Table 1. We conduct the 
ablation test on these problems to compare the validation loss after convergence with different training loss functions in 
the training process. Fig. B.14 shows the comparison of validation losses with different training loss functions in the training 
process of different problems validated by L1 loss function. Fig. B.15 shows the comparison of validation losses with different 
training loss functions in the training process of different problems validated by MSE loss function. We observe that for all 
problems, the validation loss with L1 is smaller than that with MSE after convergence. We believe the better performance 
of L1 may be due to MSE loss’s high sensitivity to outliers. Hence, we choose to use L1 loss as our training loss function.

The details of the parameters we set and some other important quantities can be found in Table 1. To show the predictive 
ability of our model, we pick T predict = 20π for the pendulum, the Lotka–Volterra and the Kepler problems. For the Hénon–
Heiles problem, we pick T predict = 10 because of its chaotic nature. We pick 15 as the sample size for the pendulum problem 
and 25 for other problems since we find that small Ntrain ’s are sufficient to generate excellent results. More discussions 
about Ntrain can be found in section 3.6. The epoch parameter represents the number of epochs needed for the training 
loss to converge. step_size indicates the period of learning rate decay, and γ is the multiplicative factor of learning rate 
decay. These two parameters decay the learning rate of each parameter group by γ every step_size epochs, which prevents 
the model from overshooting the local minimum. The dynamic learning rate can also make our model converges faster. M
indicates the number of terms of the Taylor polynomial introduced in the construction of the neural networks (12). Through 
experimentation, we find that 8 terms can represent most functions well. Therefore, we pick M = 8 for the pendulum 
and the Lotka-Volterra problems. For more complicated systems, like the Kepler and the Hénon–Heiles systems, we choose 
M = 20 and M = 12, respectively.

Nh , the dimension of hidden layers, is a parameter that needs to be carefully chosen. We conduct the ablation test on the 
pendulum, the Lotka–Volterra, the Kepler, and the Hénon–Heiles problems to compare the validation loss using different Nh . 
Fig. 3 shows the results of the test. From Fig. 3(a), it can be seen that the validation loss after convergence for the pendulum 
problem drops significantly after increasing Nh from 8 to 16 and then stays relatively similar with higher Nh . Therefore, 
we choose to use 16 as Nh for the pendulum problem. Following the same logic, we choose 8, 8, and 16 as Nh for the 
Lotka–Volterra, the Kepler, and the Hénon–Heiles problems. Notice that Nh for the lower-dimensional problem, namely, 
the pendulum problem, is larger than Nh for the higher dimensional problem, the Kepler problem. This is because, for the 
higher-dimensional problem, the degree of freedom is actually more limited. This is due to the prior knowledge that the 
forces between objects are the same.

Another vital parameter that is not mentioned in Table 1 is the integral time step �t in the symplectic integrator. Notice 
that the choice of �t largely depends on the time span Ttrain . Fig. 4 compares the validation losses generated by various 
integral time steps �t based on fixed dataset time spans Ttrain = 0.01, 0.1 and 0.2 respectively in the training process. For 
9
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Fig. 3. Comparisons of validation losses with different Nh in the training process for (a) the pendulum, (b) the Lotka–Volterra, (c) the Kepler, and (d) the 
Hénon–Heiles problems.

Fig. 4. Comparisons of validation losses with different dt in the training process. (a), (b), and (c) are trained based on different time spans Ttrain = 0.01, 
0.1, and 0.2, respectively.

the concern of gradient vanishing or exploding, notice that when the number of iterations n is big, which is when �t is 
small, we did not observe these issues, as shown in 4(a), where the smallest �t is 10−4. Since we embed the structure 
of residual networks in our symplectic integrator, there should not be the problem of vanishing gradient. It is clear that 
the validation loss converges to a similar degree with various �t based on fixed Ttrain = 0.01 and Ttrain = 0.1 in 4(a) and 
(b), while it increases significantly as �t increases based on fixed Ttrain = 0.02 in 4(c). Thus, we need to be careful when 
choosing n, or �t , for the dataset with larger time span Ttrain .

We record the training loss for all the problems at the epochs specified above. It is worth noticing that the training loss 
of our model is at 10−5 order of magnitude and below, which indicates our model’s ability to fit the training data. As we 
can see from Fig. 5, the prediction results using Taylor-net match perfectly with the ground truth for all three systems, even 
though the Ttrain = 0.01 is 2000π times shorter than the T predict = 20π in Fig. 5 (a) and (b), and 1000 times shorter in 
Fig. 5 (c). In particular, our model predicts the dynamics of the chaotic system, the Hénon–Heiles system (29) extremely 
well, which regular neural networks fail to do. The results indicate the compelling predictive ability of our model. This can 
be seen more clearly in 3.5 when we compare Taylor-net with other methods.

3.4. Taylor series vs. ReLU

In order to evaluate the performance of using Taylor series as the underlying structure of Taylor-net to ensure nonlinear-
ity, we also implement the most commonly used activation function, ReLU and compare the training loss with our current 
model. We construct the neural networks as (12) with parameters specified in Table 1, except we use f i(x) = max(0, x)
instead. The experimental results show that the neural networks perform better with Taylor series than with ReLU in the 
10
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Fig. 5. Prediction result using Taylor-net for (a) the pendulum, (b) the Lotka–Volterra, and (c) the Hénon–Heiles problems. For better visualization, we set 
the initial points as (a) (q0, p0) = (1, 1), (b) (q0, p0) = (1, 1), and (c) (q0, p0) = ([0, 0], [0.5, 0.5]). The prediction results using Taylor-net match perfectly 
with the ground truth for all three systems, even though the Ttrain is 2000π times shorter than the T predict in (a) and (b), and 1000 times shorter in (c). 
Ttrain = 0.01 and T predict = 20π in (a) and (b), and Ttrain = 0.01 and T predict = 10 in (c).

Fig. 6. Mean of Ltrain using Taylor series vs. using ReLU for (a) the pendulum, (b) the Lotka–Volterra, and (c) the Kepler problems. We train each model until 
Ltrain converges and average Ltrain for (a) every 10 epochs for the pendulum problem, (b) every 10 epochs for the Lotka–Volterra problem, and (c) every 5 
epochs for the Kepler problem.

pendulum, the Lotka–Volterra, and the Kepler problems. We can observe from Fig. 6 that in all three problems the loss of 
using ReLU is larger than the loss of using Taylor series after the loss converges. In the pendulum problem, the mean of 
loss after convergence from 100 epochs to 300 epochs using the Taylor series is 8.878 × 10−5, while that of using ReLU 
is 8.348 × 10−4, which is 10 times larger than the mean of loss using Taylor series. The difference in the Lotka–Volterra 
problem is even more obvious. The mean of loss from 100 epochs to 300 epochs using the Taylor series is 7.832 × 10−5, 
while that of using ReLU is 4.782 × 10−3. In the Kepler problem, the mean of loss from 40 epochs to 100 epochs using the 
Taylor series is 2.524 × 10−4, while that of using ReLU is 8.408 × 10−4. In all three problems, the Taylor series performs 
undoubtedly better than ReLU. Thus, the results clearly show that using the Taylor series gives a better approximation of 
the dynamics of the system. The strong representational ability of the Taylor series is an important factor that increases the 
accuracy of the prediction.

3.5. Predictive ability and robustness

Now, to assess how well our method can predict the future flow, we compare the predictive ability of Taylor-net with 
ODE-net and HNN. We apply all three methods on the pendulum problem, and let Ttrain = 0.01 and T predict = 20π . We 
evaluate the performance of the models by calculating the average prediction error at each predicted points, defined by

ε
(nt )
p = 1

Ntest

Ntest∑
s=1

‖p̂(s,nt )
n − p(s,nt )

n ‖1 + ‖q̂(s,nt )
n − q(s,nt )

n ‖1, (31)

and the average ε(nt )
p over T predict is

εp = 1

NT

NT∑
nt=1

ε
(nt )
p , (32)

where Ntest represents the testing sample size specified in section 3.1 and NT = T predict/�t with �t = 0.01. After exper-
imentation, we find that Taylor-net has stronger predictive ability than the other two methods. The first row of Table 2
shows the average prediction error of 100 testing samples using the three methods over T predict when no noise is added. 
The prediction error of HNN is almost double that of Taylor-net, while the prediction error of ODE-net is about 7 times that 
11
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Table 2
Comparison of εp for the pendulum problem without noise, with noise 
σ1, σ2 ∼N(0, 0.1), and with noise σ1, σ2 ∼N(0, 0.5).

Methods Taylor-net HNN ODE-net

εp , without noise 0.213 0.377 1.416
εp , with noise σ1, σ2 ∼N(0,0.1) 1.667 2.433 3.301
εp , with noise σ1, σ2 ∼N(0,0.5) 1.293 2.416 27.114

Fig. 7. Prediction error ε(nt )
p at different t from t = 0 to t = 20π for the pendulum problem (a) without noise, (b) with noise σ1, σ2 ∼N(0, 0.1), and (c) with 

noise σ1, σ2 ∼N(0, 0.5). In the figure, t = nt�t , where �t = 0.01. ε(nt )
p is the prediction error at the nth

t predicted point among the total NT = T predict/�t
predicted points. We use Ttrain = 0.01, Ttrain = 0.5 and Ttrain = 1 to train the model in (a), (b), and (c), respectively.

of Taylor-net. To analyze the difference more quantitatively, we made several plots to help us better compare the prediction 
results. Fig. 7 shows the plots of prediction error ε(nt )

p against t = nt�t over T predict for all three methods. In Fig. 8, we plot 
the prediction of position q against time period for all three methods as well as the ground truth in order to see how well 
the prediction results match the ground truth. From Fig. 8 (a), we can already see that the prediction result of ODE-net 
gradually deviates from the ground truth as time progresses, while the prediction of Taylor-net and HNN stays mostly con-
sistent with the ground truth, with the former being slightly closer to the ground truth. The difference between Taylor-net 
and HNN can be seen more clearly in Fig. 7 (a). Observe that the prediction error of Taylor-net is obviously smaller than 
that of the other two methods, and the difference becomes more and more apparent as time increases. The prediction error 
of ODE-net is larger than HNN and Taylor-net at the beginning of T predict and increases at a much faster rate than the other 
two methods. Although the prediction error of HNN has no obvious difference from that of Taylor-net at the beginning, it 
gradually diverges from the prediction error of Taylor-net.

Additionally, in Fig. 9, we plot the numerically solved ground truth, Taylor-net, HNN, and ODE-net calculated Hamiltonian 
for the pendulum problem. Fig. 9 shows that the Taylor-net preserves the Hamiltonian relatively successfully, while ODE-net 
diverges away from the ground truth quickly. Although the predicting result of HNN does not seem to drift away from the 
ground truth, the divergent amplitude of HNN is greater than that of Taylor-net. Note that our model strictly preserves 
the symplectic structure, which is a geometric structure that cannot be quantitatively calculated and plotted. Since the 
symplectic structure is preserved, the Hamiltonian predicted by our model is much closer to the ground truth.

In real systems, it is almost impossible to collect data without noise. Therefore, with noisy data, the robustness of neural 
networks is particular important. Instead of using (qn, pn) to train the model, we add some random noise to the true 
value so that it becomes (qn + σ1, pn + σ2). We test three models on two cases with small and large noises. We add noise 
σ1, σ2 ∼ N(0, 0.1) in the case of small noise and σ1, σ2 ∼ N(0, 0.5) in the case of large noise. We use Ttrain = 0.5 and 
Ttrain = 1 to train the model in the cases of small and large noises respectively. In both cases, we use 50 samples and make 
prediction over T predict = 20π .

Fig. 10 shows the predicted p versus q using different methods. From Fig. 10 (a), we find that Taylor-net discovers the 
unknown trajectory successfully, while ODE-net diverges from the true value quickly. Although the predicting result of HNN 
does not seem to drift away from the true dynamics, it does not fit the true trajectory as well as the prediction made by 
Taylor-net. The difference becomes clearer as we increase the noise. From Fig. 10 (b), we observe that Taylor-net still makes 
predictions that are almost consistent with the true trajectories, while ODE-net completely fails to do so. Moreover, the 
prediction made by HNN is much worse than in the case of small noise, while the performance of Taylor-net remains as 
good as the previous case.

This can be more clearly seen from Fig. 7 (b) and (c). We can see that ε(nt )
p of Taylor-net is consistent in both cases 

of small and large noises, while ε(nt )
p of HNN and ODE-net increase significantly and exhibit more fluctuation. It is worth 

noticing that in Fig. 7 (c), ε(nt )
p of HNN becomes smaller towards the end of T predict . However, it is not because the perfor-

mance of HNN becomes better, but rather due to the fact that the predicted flow of HNN is off by one period of motion, 
which can be seen from Fig. 8 (c). The second and third rows of Table 2 also give an overview on how the prediction error 
εp over T predict of the three methods differ. From Fig. 8 (b) and (c), we can clearly observe that the amplitude of predicted 
q using ODE-net increases as t increases, and the amplitude of predicted q using HNN is slightly larger or smaller than that 
12
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Fig. 8. Prediction results of position q from t = 0 to t = 20π for the pendulum problem using Taylor-net, HNN, and ODE-net (a) without noise, (b) with 
noise σ1, σ2 ∼ N(0, 0.1), and (c) with noise σ1, σ2 ∼ N(0, 0.5). For all the models, we set the initial point as (q0, p0) = (1, 1). We use Ttrain = 0.01, 
Ttrain = 0.5 and Ttrain = 1 to train the model in (a), (b), and (c), respectively. All the methods are trained until the Lvalidation converges.

of the ground truth from the beginning. In contrast, due to the intrinsic symplectic structure of Taylor-net, the amplitude of 
predicted q using Taylor-net is inconsistent with the ground truth, without changing in time. Additionally, it is obvious that 
the predicted q using Taylor-net has the smallest phase shift among the three methods.

3.6. Training sample size and convergence rate

Besides the strong predictive ability and robustness, we also want to highlight the significantly small Ntrain and the 
fast convergence rate of our approach. In a complex physical system, the cost of acquiring data is high. Our model can 
learn from the dataset that contains less than 15 samples and still generate validation loss Lvalidation that is below 10−4. 
13
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Fig. 9. Prediction results of Hamiltonian H from t = 0 to t = 12π for the pendulum problem (a) without noise, (b) with noise σ1, σ2 ∼ N(0, 0.1), and 
(c) with noise σ1, σ2 ∼N(0, 0.5).

Fig. 10. Prediction results of position q and momentum p from t = 0 to t = 20π . (a) with noise σ1, σ2 ∼N(0, 0.1) and (b) with noise σ1, σ2 ∼N(0, 0.5) in 
training process. We use Ttrain = 0.5 and Ttrain = 1 to train the model in (a) and (b) respectively. All the methods are trained until the Lvalidation converges. 
In (a), we only plot the result of ODE-net until t = 4π because the result beyond that will further diverge from the ground truth and cannot be fit into the 
graph. For the same reason, we only plot the result of ODE-net until t = π in (b).

Fig. 11. (a) At 100 epochs, Lvalidation as a function of sample size ranging from Ntrain = 1 to Ntrain = 25. The Lvalidation is averaged over 50 trials. (b) Prediction 
results of position q and momentum p from t = 0 to t = 2π from t = 0 to t = 20π using trained models after 1 epoch.

In Fig. 11 (a), we plot the Lvalidation as a function of sample size using Taylor-net, HNN, and ODE-net. To make a fair 
comparison, we average the values of Lvalidation over 50 trials. We can observe that the Lvalidation for Taylor-net at 1 sample 
is around 5 times smaller than the Lvalidation for ODE-net and the Lvalidation for HNN. Although there are some fluctuations 
in Lvalidation due to small Ntrain , the Lvalidation for Taylor-net converges at around 10 samples, while the Lvalidation for HNN is 
still decreasing. Although the Lvalidation for ODE-net also converges around 10 samples, the value of its Lvalidation is 10 times 
larger than that the Lvalidation for Taylor-net.

Because of the intrinsically structure-preserving nature of our model, our model can well predict the dynamics of the 
underlying system even when it is trained for only a few epochs. In Fig. 11 (b), we plot the prediction results from t = 0
to t = 20π using Taylor-net, HNN, and ODE-net after only 1 epoch of training. The prediction results made by HNN and 
ODE-net completely fail to match the true flow, while Taylor-net predicts the truth to a level that can never be achieved 
using HNN and ODE-net at such a small number of epochs.
14
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Table 3
Comparison between Taylor-net, HNN, ODE-net. � represents the method preserves such property.

Methods Taylor-net HNN ODE-net

Utilize physics prior � � Partially
Preserve symplectic structure � Partially
No need for intermediate training data �
No need for analytical solution of derivative �
Number of epochs until Ltrain convergesa 100 1000 7000
Sample size needed for Lvalidation ∼ 10−4 b 15 50 50

a In the pendulum problem with sample size 15.
b In the pendulum problem, train each model until convergence.

We summarize the main traits and performance of the three methodologies in Table 3. We already emphasized enough 
that our model utilizes physics prior through constructing neural networks that intrinsically preserve the symplectic struc-
ture. Due to our model’s structure-preserving ability, it can make accurate predictions with a very small training dataset 
that does not require any intermediate data. We also want to mention that HNN and ODE-net both require the analytical 
solutions of the temporal derivatives to train their models, which are often not obtainable from real systems. Moreover, 
besides the qualitative differences, we also compare the three methods quantitatively. In the pendulum problem, we fix the 
sample size to be 15 and find Taylor-net only needs 100 epochs for Ltrain to converge, while HNN and ODE-net need 1000 
epochs and 7000 epochs respectively. We also test how many samples Taylor-net, HNN, and ODE-net need for Lvalidation to 
decrease to 10−4. Notice that we train Taylor-net, HNN, and ODE-net until convergence, which is for 100, 1000, and 7000 
epochs respectively. Taylor-net only needs 15 samples and 100 epochs of training to achieve Lvalidation ∼ 10−4, while HNN 
needs 50 samples and 1000 epochs and ODE-net needs 50 samples and 7000 epochs. If we train HNN and ODE-net for 100 
epochs in the same manner as Taylor-net, their Lvalidation will never reach 10−4.

4. High-dimensional systems

We want to extend our model into higher-dimensional dynamical systems. Let’s consider a more complicated system, a 
multidimensional N-body system. Its Hamiltonian is given by

H(q, p) = 1

2

Nbody∑
i=1

‖pi‖2 −
∑

1≤i< j≤Nbody

1

‖q j − qi‖
, (33)

where Nbody is the number of bodies in the system, and Nbody × (dimension of space) = N .
In a two-dimensional space, consider a system with Nbody > 2 bodies. The cost of collecting training data from all 

Nbody bodies may be high, and the training process may be time inefficient. Thus, instead of collecting information from 
all Nbody bodies to train our model, we only use data collected from two bodies as training data to make a prediction of 
the dynamics of Nbody bodies. This is based on the assumption that the interactive models between particle pairs with 
unit particle strengths m = 1 are the same, and their corresponding Hamiltonian can be represented as network Ĥθ (x j, xk), 
based on which the corresponding Hamiltonian of Nbody particles can be written as [52,53]

Hθ =
Nbody∑
i, j=1

m jmkĤθ (x j, xk). (34)

We embed (34) into the symplectic integrator that includes m j to obtain the final network architecture.
The setup of N-body problem is similar to the previous problems. The training period is Ttrain = 0.08 and the prediction 

period is T predict = 2π . Similar to the setup of previous problems, the learning rate is decaying every 10 epochs. Learning 
rate, γ , i, step_size, and M are the same as the setup of Kepler problem in Table 1, except we use 40 samples to train our 
model. The training process takes about 100 epochs for the loss to converge. In Fig. 12, we use our trained model to predict 
the dynamics of a 3-body system and a 6-body system. In both cases, our model can predict the paths accurately, with 
the predicted paths in the 3-body system matching the true paths perfectly. The success of these tasks shows the strong 
generalization ability of our model. Based on our experiments, our model can be applied to problems with a larger scale, 
for example, to predict the motions of hundreds of bodies.

5. Conclusion

We present Taylor-nets, a novel neural network architecture that can conduct continuous, long-term predictions based on 
sparse, short-term observations. Taylor-nets consist of two sub-networks, whose outputs are combined using a fourth-order 
symplectic. Both sub-networks are embedded with the form of Taylor series expansion where each term is designed as a 
symmetric structure. Our model is able to learn the continuous-time evolution of the target systems while simultaneously 
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Fig. 12. Predicted position q and momentum p from t = 0 to t = 2π (a) for 3 bodies and (b) for 6 bodies. In both (a) and (b), the training period is 
Ttrain = 0.08, and the prediction period is T predict = 2π . We use the same trained model to make the predictions in (a) and (b), which is trained for 100 
epochs.

preserving their symplectic structures. We demonstrate the efficacy of our Taylor-net in predicting a broad spectrum of 
Hamiltonian dynamic systems, including the pendulum, the Lotka–Volterra, the Kepler, and the Hénon–Heiles systems.

We evaluate the performance of using the Taylor series as the underlying structure of Taylor-net by comparing it with 
the most used activation function, ReLU. The experimental results show that the neural networks perform better with Taylor 
series than with ReLU in the pendulum, the Lotka–Volterra, and the Kepler problems. In all three systems, the training loss 
of using the Taylor series is 10 to 100 times smaller than that of using ReLU. The strong representation ability of the Taylor 
series is an important factor that increases the accuracy of the prediction.

Moreover, we compare Taylor-net with other state-of-art methods, ODE-net and HNN, to access its predictive ability 
and robustness. We observe that the prediction error of Taylor-net over the prediction period is half of that of HNN and 
one-seventh of that of ODE-net. The predictions made by HNN and ODE-net also diverge from the true flow much faster 
as time increases. Additionally, to test the robustness of our model, we implement two testing cases with small and large 
noises. We add noise σ1, σ2 ∼ N(0, 0.1) in the case of small noise and σ1, σ2 ∼ N(0, 0.5) in the case of large noise. In 
the first case, Taylor-net discovers the unknown trajectory successfully, while ODE-net diverges away from the true value 
quickly. Although the predicting result of HNN does not seem to drift away from the true dynamics, it does not fit the true 
trajectory as well as the prediction made by Taylor-net. The prediction error of Taylor-net is about two-thirds and half of 
that of HNN and ODE-net respectively. The difference becomes clearer as we increase the noise. We observe that Taylor-
net still makes predictions that are almost consistent with the true trajectories, while ODE-net completely fails to do so. 
Moreover, the prediction made by HNN is much worse than in the case of small noise, while the performance of Taylor-net 
remains as good as the previous case. The prediction error of Taylor-net is about half and one-twentieth of that of HNN and 
ODE-net respectively.

Additionally, we highlight the small training sample size and the fast convergence rate of our model. Under the same 
setting, HNN and OED-net need 5 times more samples than our model does to achieve the same validation loss, and their 
models take 10 times and 70 times more epochs to converge. We also test our model under only 1 epoch of training, the 
prediction results made by HNN and ODE-net completely fail to match the true flow, while Taylor-net predicts the truth 
to a level that is incomparable with HNN and ODE-net. Compared with HNN and OED-net, our model exhibits its unique 
computational merits by using small data with a short training period (6000 times shorter than the predicting period), small 
sample sizes, and no intermediate data to train the networks while outperforming others regrading the prediction accuracy, 
convergence rate, and robustness to a great extent.

Towards the end of our work in section 4, we discussed the N-body system, which is a high-dimensional Hamiltonian 
system whose underlying governing equations are non-differentiable. In our future works, we will continue to explore 
solving this kind of high-dimensional problems, using some essential ideas of Taylor-nets with potential modifications. An 
other interesting direction will be to design a different neural network architecture with the same structure-preserving 
ability to learn the dynamics of non-separable Hamiltonian systems.
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Appendix A. Adjoint method

Apply the chain rule to the gradients of loss function and consider the two neural networks T p(p, θ p) and V q(q, θq)

under the framework of neural ODEs, we obtain the following sets of equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L

∂θ p
= ∂L

∂q (t1)

dq (t1)

dθ p

q (t1) =
t1∫

t0

T p(p, θ p)dt + q0

(A.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L

∂θq
= ∂L

∂ p (t1)

dp (t1)

dθq

p (t1) = −
t1∫

t0

V q(q, θq)dt + p0

(A.2)

where L is the loss function, and q (t1), p (t1), q0, and p0 are q and p at t1 and t0, respectively.
Let bp(t) = dq (t) /dθ p and bq(t) = dp (t) /dθq , we derive the following equations:

bp(t) = dq (t)

dθ p
=

t∫
t0

[
∂T p

∂θ p
+ ∂T p

∂ p
bp(τ )

]
dτ

=⇒

⎧⎪⎨
⎪⎩

dbp(t)

dt
= ∂T p

∂θ p
+ ∂T p

∂ p
bp(t)

bp(0) = 0,

(A.3)

bq(t) = dp (t)

dθq
= −

t∫
t0

[
∂V q

∂θq
+ ∂V q

∂q
bq(τ )

]
dτ

=⇒

⎧⎪⎨
⎪⎩

dbq(t)

dt
= −∂V q

∂θq
− ∂V q

∂q
bq(t)

bq(0) = 0.

(A.4)

Given bp and bq , we can rewrite the gradients of loss function as

∂L

∂θ p
= ∂L

∂q (t1)
bp(t), (A.5)

and

∂L

∂θq
= ∂L

∂ p (t1)
bq(t). (A.6)

However, the scale for solving differential equations of bq and bp is too large. We therefore rewrite bp and bq as

bp(t) = P p(t)

t∫
t0

P p(τ )−1 ∂T p

∂θ p
dτ , (A.7)

and

bq(t) = −P q(t)

t∫
P q(τ )−1 ∂V q

∂θq
dτ . (A.8)
t0
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Substitute bp and bq into (A.3), (A.4), (A.5), and (A.6), we obtain two sets of equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L

∂θ p
= ∂L

∂q(t1)
P p(t1)

t1∫
t0

P p(t)−1 ∂T p

∂θ p
dt,

dP p(t)

dt
= ∂T p

∂ p
P p(t),

(A.9)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L

∂θq
= − ∂L

∂ p(t1)
P q(t1)

t1∫
t0

P q(t)
−1 ∂V q

∂θq
dt,

dP q(t)

dt
= −∂V q

∂q
P q(t).

(A.10)

However, the scale for solving P p and P q is still too large. We now consider the adjoint states ap(t) and aq(t):

ap(t) = ∂L

∂q(t1)
P p(t1)P p(t)−1, ap(t1) = ∂L

∂q(t1)
, (A.11)

and

aq(t) = ∂L

∂ p(t1)
P q(t1)P q(t)

−1, aq(t1) = ∂L

∂ p(t1)
. (A.12)

We can then rewrite the gradient of loss function regarding to θ p as

dL

dθ p
= ∂L

∂q(t1)
P p(t1)

t1∫
t0

P p(t)−1 ∂T p

∂θ p
dt =

t1∫
t0

ap(t)
∂T p

∂θ p
dt. (A.13)

Similarly, the gradient of loss function regarding to θq can be derived with the result differs by the sign

dL

dθq
= −

t1∫
t0

aq(t)
∂V q

∂θq
dt. (A.14)

We now want to derive the derivative of ap(t) and aq(t). The derivative of ap(t) can be derived as follows

dap

dt
= ∂L

∂q(t1)
P p(t1)

dP p(t)−1

dt

= − ∂L

∂q (t1)
P p (t1) P p(t)−1 dP p(t)

dt
P p(t)−1

= −ap(t)
dP p(t)

dt
P p(t)−1

= −ap(t)
∂T p

∂ p
.

(A.15)

The derivative of aq(t) can be found in a similar manner. We obtain that

daq

dt
= aq(t)

∂V q

∂q
. (A.16)

Combine the results we found in (A.11), (A.12), (A.13), (A.14), (A.15), and (A.16), we obtain the sets of equations that are 
our final result⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂θ p
=

t1∫
t0

ap(t)
∂T p

∂θ p
dt,

dap

dt
= −ap(t)

∂T p

∂ p
,

ap(t1) = ∂L
,

(A.17)
∂q(t1)
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Fig. A.13. Prediction result of the pendulum problem using adjoint method as backward propagation.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂θq
= −

t1∫
t0

aq(t)
∂V q

∂θq
dt,

daq

dt
= aq(t)

∂V q

∂q
,

aq(t1) = ∂L

∂ p(t1)
.

(A.18)

Using (A.17) and (A.18), we calculate the gradients of loss function in the backward propagation.
Fig. A.13, shows the prediction result of the pendulum problem using the adjoint method as our backward propagation 

method. We can see that the prediction result matches the ground truth well. However, training using the adjoint sensitivity 
method is about 30 percent slower than training using the automatic differentiation method due to higher time complexity.

Appendix B. Loss function ablation test

We conduct the ablation test on the pendulum, the Lotka–Volterra, the Kepler, and the Hénon–Heiles problems to com-
pare the validation loss after convergence with different training loss functions in the training process. Fig. B.14 shows the 
comparison of validation losses with different training loss functions in the training process of different problems validated 

Fig. B.14. Comparisons of validation losses with different training loss functions for (a) the pendulum, (b) the Lotka–Volterra, (c) the Kepler, and (d) the 
Hénon–Heiles problems validated by L1 loss function. The red dashed lines represent the networks trained by L1 loss function; the blue solid lines represent 
the networks trained by MSE loss function. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
19



Y. Tong, S. Xiong, X. He et al. Journal of Computational Physics 437 (2021) 110325
Fig. B.15. Comparisons of validation losses with different training loss functions for (a) the pendulum, (b) the Lotka–Volterra, (c) the Kepler, and (d) the 
Hénon–Heiles problems validated by MSE loss function. The red dashed lines represent the networks trained by L1 loss function; the blue solid lines 
represent the networks trained by MSE loss function.

by L1 loss function. Fig. B.15 shows the comparison of validation losses with different training loss functions in the training 
process of different problems validated by MSE loss function. We observe that for all problems, the validation loss with L1
is smaller than that with MSE after convergence. The better performance of L1 may be due to MSE loss’s high sensitivity to 
outliers. This explains why we choose L1 loss function as our training loss function.
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