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Abstract
Predicting future discontinuous phenomena that are unobservable from train-
ing data sets has long been a challenging problem in scientific machine learning.
We introduce a novel paradigm to predict the emergence and evolution of vari-
ous discontinuities of hyperbolic partial differential equations (PDEs) based on
given training data over a short window with limited discontinuity information.
Our method is inspired by the classical Roe solver [P. L. Roe, J Comput Phys., vol.
43, 1981], a basic tool for simulating various hyperbolic PDEs in computational
physics. By carefully designing the computing primitives, the data flow, and the
novel pseudoinverse processing module, we enable our data-driven predictor to
satisfy all the essential mathematical criteria of a Roe solver and hence deliver
accurate predictions of hyperbolic PDEs. We demonstrate through various exam-
ples that our data-driven Roe predictor outperforms original human-designed
Roe solver and deep neural networks with weak priors in terms of accuracy and
robustness.
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1 INTRODUCTION

Predicting the invisible future is the ultimate goal researchers strive to achieve in machine intelligence. To materialize
this visionary goal into an algorithmic context, we propose to predict a dynamical system’s future behavior patterns that
are unseen in the training data set. Namely, the training and testing data sets exhibit salient differences with respect to
their features and distributions in the solution space. Such examples are ubiquitous in natural and social sciences. For
example, hydrodynamologists seek to predict the future occurrence of shock waves based on the observation of the current
smooth fluid flow1; epidemiologists aim to predict the break-out time of an epidemic disease based on the collected data
on an early stage.2 More examples exist in weather forecast,3 aircraft control,4 traffic scheduling,5 and economic crisis
prediction.6 From a mathematical perspective, we summarize these prediction problems as searching for the evolutionary
solution of a partial differential equation (PDE) whose current observable status is significantly different from its targeted
behaviors in the long future.

Hyperbolic PDE featured by discontinuities is commonly seen in many fields of physical science7–9 and engineer-
ing.10,11 Riemann problem,12 as the simplest Hyperbolic PDE, is composed of a conservation equation with piecewise
constant initial data which has only a single discontinuity in the domain of interest.13 In scientific computing, Riemann
solvers enable the hyperbolic PDEs to be seen as Riemann problems on local scales14,15 by discretizing the hyperbolic PDEs
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into grids.16–18 Treating the hyperbolic PDE as multiple Riemann problems can be traced back to the work of Godunov19

with many follow-ups works.12,20 Roe solver, invented by Phil Roe in 1981, is a linearized approximate Riemann solver
based on Godunov’s method.21

In addition to the traditional numerical methods, using a deep learning network to approximate discontinuous
functions has a theoretical foundation in various literature, such as studies on the Hölder spaces,22 piecewise smooth
functions,23 linear estimators,24 and higher adaptive and spatial anisotropic target functions.25 With the above-mentioned
theoretical cornerstone, physics-informed neural networks (PINNs) are proposed by Raissi et al. to provide data-driven
solutions for nonlinear problems,26 employing the well-known capacity of deep neural networks as universal function
approximators.27 Among its notable features, PINNs maintain symmetry, invariance, and conservation principles deriving
from physical laws that govern observed data.28 Michoski et al. show that without any regularization, irregular solutions
to PDE can be captured.29 Mao et al. further use PINNs to approximate solutions to high-speed flows by formulating
the Euler equation with initial and boundary conditions into the loss function.30 However, these works did not consider
capturing the features that are not in the training set.

Devising a data-driven paradigm to address the prediction problem of unobservable pattern is difficult for two reasons.
First, the target patterns do not exist in the training data set. In many scenarios, the training data merely covers a small
region of the entire solution space.31,32 Hence, the conventional use of deep neural networks falls short in the uncovering
patterns. Second, there is a lack of accurate models to describe the evolution that connects the current, observable states, to
the future, predictable targets. Mathematically, we typically need to use PDEs to model such an evolution.33 However, in
many cases, we do not have these PDEs in hand. Instead, only some first-principled inductive priors, such as conservation
laws, are available to guide and evaluate the predictions on a high level. The limitation of observations and insufficiency
of accurate models jointly make the prediction of unobservable patterns impossible.

We conduct a preliminary exploration to tackle the computational challenges of predicting unobservable patterns by
proposing a novel approach that hybridizes model priors and learning paradigms on an architectural level. We describe
our high-level design philosophy as “templaterizable prior embedding”: analogous to a generic programming process, we
use abstracted, inductive priors as a model template to uncover the unknown evolution mechanics that can be instantiated
by an appropriate combination of data-driven primitive computing blocks. These computing primitives are embodied
with specific mathematical roles in the template and designed as a set of neural network modules that can be trained in
an end-to-end fashion to search for their optimal instantiations. Our learning paradigm which is facilitated with these
prior-embedded modules can characterize dynamic evolution in which (i) the target patterns are invisible in training data
sets, (ii) the observation window is partial and short, and (iii) no accurate PDE models connect the current and future.

We devise our “templaterizable priors” by creating a template model based on a classical Riemann solver, which is
the Roe solver.34 In the following sections, we will demonstrate how we take advantage of the mathematical principles
to devise a novel learning model (named RoeNet) by embedding the templaterizable Roe modules as a set of data-driven
computing primitives embodied with strong mathematical priors. There are two significant differences between RoeNet
and Roe solver. First, RoeNet replaces the Roe matrix with a neural network that is mainly composed of ResBlocks. Second,
RoeNet replaces the inverse matrix with the pseudoinverse matrix. Although RoeNet is designed based on an approximate
Riemann solver, the introduction of the pseudoinverse gives it a higher parameter dimensions beyond the number of
equation components. Therefore, the network has a different solution space from the conventional approximation or
exact Riemann solver.

At the same time, navigating the solution space of a deep neural network can be particularly challenging when
aiming to continuously track the evolution of intermittent solutions. Unlike these traditional networks, RoeNet offers
a more constrained and hence manageable solution space. This advantageous feature obviates the need for employing
exceedingly large neural networks and datasets to accurately delineate the solution space. Additionally, RoeNet incor-
porates an embedded Roe solver, which serves as a specialized mechanism for addressing the conservation challenges
inherently associated with hyperbolic equations. The integration of this solver not only enhances the network’s over-
all problem-solving capacity but also renders it more adept at tackling the specific nuances related to the conservation
properties of hyperbolic systems. Consequently, RoeNet emerges as a highly efficacious computational tool for solving
complex hyperbolic PDEs, offering both computational efficiency and solution accuracy.

RoeNet can be regarded as a neural network that predicts approximate continuous or discontinuous solutions of hyper-
bolic PDEs. The prediction of discontinuous solutions by RoeNet is manifested in two aspects. First, RoeNet can predict
the evolution of discontinuous solutions, that is, it can predict the discontinuous jumps evolving from smooth regions
in the dataset. In addition, RoeNet can predict the future discontinuities based only on short-term continuous training
data. We examine RoeNet’s ability by conducting long-term predictions of discontinuity for a broad range of hyperbolic
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T A B L E 1 Notations used. The outputs of L𝜃 and 𝚲𝜙 are a Nh × Nc matrix and a Nh × Nh diagonal matrix, respectively.

Notation Meaning

Nc Number of components of an evolutionary variable

Nd Dimension of spatial coordinates

Ng Number of spatial grid points

Nh Hidden dimension in RoeNet

u = [u(1),u(2), … ,u(Nc)]T Conserved quantity with Nc components

F = [F(1),F(2), … ,F(Nc)]T Flux function with Nc components

x = (x1, x2, … , xNd
) Nd-dimensional spatial coordinates

L Nc × Nc invertible matrix

𝚲 = diag(Λ1, … ,ΛNc
) Nc × Nc diagonal matrix

|𝚲| = diag(|Λ1|, … , |ΛNc
|) Absolute value of 𝚲

Ã = L−1𝚲L Diagonalization of Roe matrix

|Ã| = L−1|𝚲|L Absolute value of Ã

L𝜃 Neural network counterpart of L

𝚲𝜙 Neural network counterpart of 𝚲

L+
𝜃
= (LT

𝜃
L𝜃)−1LT

𝜃
Neural network counterpart of L−1

PDEs. Outperforming both human-designed numerical schemes and state-of-the-art neural networks, the results demon-
strate the accuracy, robustness, and outstanding predictive capability of our RoeNet framework in processing invisible
phenomena.

The outline of this article is as follows. In Section 2 we introduce the hyperbolic conservation law and an approximate
Riemann solver, the Roe solver. In Section 3, we introduce the design ideas and the implementation details of RoeNet
based on the Roe solver and pseudoinverse embedding. Next, Section 4 describes the numerical results, including linear
and nonlinear, one-dimensional and multidimensional, one-component and multi-component equations. In Section 5,
we validate our design of RoeNet architecture and numerical settings in the training process by a series of ablation exper-
iments. At the end of this section, we compare our method with PINNs using DeepXDE library.35 Lastly, conclusions and
potential directions of our future research are presented in Section 6. In addition, the main notations used in this article
are summarized in Table 1.

2 HYPERBOLIC CONSERVATION LAW AND ROE SOLVER

2.1 Hyperbolic conservation law

In continuum mechanics, a one-dimensional hyperbolic conservation law is a first-order quasilinear hyperbolic PDE

𝜕u
𝜕t
+ 𝜕F(u)

𝜕x
= 0, (1)

with an initial condition

u(t = t0, x) = u0(x), (2)

and a proper boundary condition. Here the Nc-component vector u = [u(1),u(2), … ,u(Nc)]T is the conserved quan-
tity, t ∈ T = [t0, t1] denotes the time variable, x denotes the spatial coordinate in a computational domain Ω, and
F = [F(1),F(2), … ,F(Nc)]T is a Nc-component flux function. The conservation laws described by (1) are fundamen-
tal in continuum mechanics, such as mass conservation, momentum conservation, and energy conservation in fluid
mechanics.36
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Equation (1) can also be expressed in a weak form, which extends the class of admissible solutions to include discon-
tinuous solutions. Specifically, by defining an arbitrary test function𝜙(t, x) that is continuously differentiable both in time
and space with compact support, and integrating (1)×𝜙 in the space-time domain T × Ω, the weak form of (1) is derived
as follows:

∫T×Ω

(

u𝜕𝜙
𝜕t
+ F𝜕𝜙

𝜕x

)

dtdx = 0. (3)

We remark that, with generalized Stokes theorem, all the partial derivatives of u and F in (1) have been passed on to the
test function 𝜙 in (3), which with the former hypothesis is sufficiently smooth to admit these derivatives.37 In the absence
of ambiguity, we refer to the solution of (1) below as a weak solution that satisfies (3).

In addition, (1) can be written in a high-dimensional form

𝜕u
𝜕t
+

Nd∑

i=1

𝜕Fi(u)
𝜕xi

= 0, (4)

where x1, x2, … , xNd denote the Nd-dimensional spatial coordinates. Since every dimension in the second term of (4),
namely 𝜕Fi(u)∕𝜕xi, has the same form 𝜕F(u)∕𝜕x as the second term of (1), (4) can be easily solved if given the solution of
(1). Thus, in the rest of this article, we will only discuss the numerical method to solve (1).

2.2 Roe solver

Philip L. Roe proposed an approximated Riemann solver based on the Godunov scheme34 that constructs an estimation for
the intercell numerical flux of F in (1) on the interface of two neighboring computational cells in a discretized space-time
computational domain.34 In particular, the Roe solver discretizes (1) as follows:

un+1
j = un

j − 𝜆r

(

F̂n
j+ 1

2
− F̂n

j− 1
2

)

, (5)

where 𝜆r = Δt∕Δx is the ratio of the temporal step size Δt to the spatial step size Δx, j = 1, … ,Ng is the grid node index,
and

F̂n
j+ 1

2
= F̂(un

j ,u
n
j+1) (6)

with

F̂(u, v) = 1
2
[
F(u) + F(v) − |Ã(u, v)|(v − u)

]
. (7)

Here, Roe matrix Ã that is assumed constant between two cells and must obey the following Roe conditions:

1. Matrix Ã is a diagonalizable matrix with real eigenvalues, that is, matrix Ã(u, v) can be diagonalized as

Ã = L−1𝚲L (8)

with an invertible matrix L and a diagonal matrix 𝚲 = diag(Λ1, … ,ΛNc ).
2. Matrix Ã is consistent with an exact Jacobian, that is,

lim
uj,uj+1→u

Ã(uj,uj+1) =
𝜕F(u)
𝜕u

. (9)

3. Physical quantity u is conserved on the interface between two computational cells as follows:

Fj+1 − Fj = Ã(uj+1 − uj). (10)
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We denote the absolute value of Ã(u, v) as

|Ã| = L−1|𝚲|L, (11)

where |𝚲| = diag(|Λ1|, … , |ΛNc |) is the absolute value of 𝚲. Substituting (6), (7) and (11) into (5) along with the third
Roe condition (10) yields

un+1
j = un

j −
1
2
𝜆r[(Ln

j+ 1
2

)−1(𝚲n
j+ 1

2
− |𝚲n

j+ 1
2
|)Ln

j+ 1
2

(un
j+1 − un

j )

+ (Ln
j− 1

2

)−1(𝚲n
j− 1

2
+ |𝚲n

j− 1
2
|)Ln

j− 1
2

(un
j − un

j−1)] (12)

with

Ln
j+ 1

2

= L(un
j ,u

n
j+1), 𝚲n

j+ 1
2
= 𝚲(un

j ,u
n
j+1). (13)

Equation (12) serves as a template of evolution from un
j to un+1

j in Roe solver.
The key to design an effective Roe solver is to find the Roe matrix Ã that satisfies the three Roe conditions. In order

to construct a Roe matrix Ã in (8), Roe solver utilizes an analytical approach to solve L and 𝚲 based on F(u). The Roe
matrix is then plugged into (12) to ultimately solve for u in (1). The Roe solver linearizes Riemann problems, and such
linearization recognizes the problem’s nonlinear jumps, while remaining computationally efficient.

3 ROENET

In this section, we introduce our design of the Roe template with pseudoinverse embedding, which accommodates the
data processing and training over the entire learning pipeline. In particular, we present our basic ideas in Section 3.1, a
detailed description of our network architecture in Section 3.2, and a summary of training settings in Section 3.3.

3.1 Roe template with pseudoinverse embedding

Without a given F, we learn the weak solution of (1) using a neural network that incorporates the framework of a Roe
solver. For time integration of u in (12), we need to construct the matrix functions L and 𝚲. Since learning a tiny parame-
ter space is impractical, using neural networks to approximate L and𝚲 directly in (13) is ineffective given that the number
of learnable parameters is limited by the number of components Nc of u. To enhance the expressiveness of our model, we
use neural network L𝜃 and𝚲𝜙 to replace L and𝚲 in (13) respectively. Similar to (13), the inputs to L𝜃 and𝚲𝜙 remains the
same as (un

j ,u
n
j+1). However, the outputs of L𝜃 and 𝚲𝜙 are now a Nh × Nc matrix and a Nh × Nh diagonal matrix respec-

tively, where the positive integer Nh is a hidden dimension. Furthermore, we introduce the concept of pseudoinverses by
replacing L−1 with

L+
𝜃
= (LT

𝜃
L𝜃)−1LT

𝜃
. (14)

Here, the transpose and inverse operations are applied to the output matrix, that is

L+
𝜃
(un

j ,u
n
j+1) = [L𝜃(un

j ,u
n
j+1)

TL𝜃(un
j ,u

n
j+1)]

−1LT
𝜃
(un

j ,u
n
j+1). (15)

Substituting L𝜃 , 𝚲𝜙, and (14) into (12) and (13) yields

un+1
j = un

j −
1
2
𝜆r(Ln

j+ 1
2
,𝜃
)+(𝚲n

j+ 1
2
,𝜙
− |𝚲n

j+ 1
2
,𝜙
|)Ln

j+ 1
2
,𝜃
(un

j+1 − un
j )

− 1
2
𝜆r(Ln

j− 1
2
,𝜃
)+(𝚲n

j− 1
2
,𝜙
+ |𝚲n

j− 1
2
,𝜙
|)Ln

j− 1
2
,𝜃
(un

j − un
j−1) (16)
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F I G U R E 1 Schematic diagram of RoeNet to predict the future discontinuity from smooth observations. The blue band shows the
distribution of the training set with respect to time, and the training set does not necessarily contain discontinuous solutions to the equations.
Meanwhile, the orange band represents the solutions predicted with RoeNet, which may contain discontinuous solutions.

with

Ln
j+ 1

2
,𝜃
= L𝜃(un

j ,u
n
j+1), 𝚲n

j+ 1
2
,𝜙
= 𝚲𝜙(un

j ,u
n
j+1). (17)

Equation (16) serves as our template to evolve the system’s states from un
j to un+1

j in RoeNet.
Figure 1 plots the schematic diagram of RoeNet to predict future discontinuity from smooth observations. We remark

that for hyperbolic conversation law with discontinuous solutions, RoeNet can predict the long-term solutions that
are fully or partially discontinuous when the given training data over a short window with limited information on
discontinuity.

3.2 Neural network architecture

Figure 2 shows an overview of our neural network architecture. In summary, RoeNet consists of L𝜃 and𝚲𝜙, two networks
embedded in (16) to serve as our template to evolve the system’s states from un

j to un+1
j . Specifically, the network in Figure 2

contains two parts, each consists of a L𝜃 and a 𝚲𝜙. The first part takes un
j−1 and un

j as input of both L𝜃 and 𝚲𝜙 and outputs
Lj− 1

2
,𝜃

through L𝜃 and 𝚲j− 1
2
,𝜙

through 𝚲𝜙. The input un
j−1 and un

j is a vector [un,(1)
j−1 , … ,un,(Nc)

j−1 ;un,(1)
j , … ,un,(Nc)

j ] of length
2Nc with Nc components. The output matrix Lj− 1

2
,𝜃

is of size (Nc × Nh), and the other output matrix 𝚲j− 1
2
,𝜙

is a diagonal
matrix of size (Nh × Nh). The second part takes un

j and un
j+1 as the input for both L𝜃 and 𝚲𝜙 and outputs Lj+ 1

2
,𝜃

through

L𝜃 and 𝚲j+ 1
2
,𝜙

through 𝚲𝜙. The input un
j and un

j+1 is a vector [un,(1)
j , … ,un,(Nc)

j ;un,(1)
j+1 , … ,un,(Nc)

j+1 ] of length 2Nc. The output
matrices Lj+ 1

2
,𝜃

and 𝚲j+ 1
2
,𝜙

take the same form as the output matrices in the first part. Given the four output matrices
Lj− 1

2
,𝜃

, 𝚲j− 1
2
,𝜙

, Lj+ 1
2
,𝜃

, and 𝚲j+ 1
2
,𝜙

, we combine them through (16) and (17) to obtain un+1
j .

Networks L𝜃 and𝚲𝜙 both consist of a chain of ResBlocks38 with a linear layer of size Nh × Nc and Nh at the end, respec-
tively. The ResBlock architecture comprises two convolutional layers and one ReLU layer, meaning that the ResBlock we
employ incorporates ReLU activation functions. In our future work, we will investigate the potential benefits of adaptive
activation functions, which could enhance learning capabilities by enabling faster convergence rates during early training
and leading to more accurate solutions.39,40

ResNet has been proven in numerous research studies to be a neural network architecture highly suitable for deep
learning and computer vision. It offers distinctive advantages in mitigating problems like gradient vanishing during net-
work training. Our RoeNet, tailored to predict the evolution of PDEs on a uniform grid, exhibits increasing network
depth as the number of time iterations grows. This network design closely mirrors the deep neural networks commonly
employed in computer vision, making ResBlock an ideal selection for building our network.
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F I G U R E 2 The architecture of the neural network that evolves the system’s states from un
j to un+1

j in RoeNet. This network takes the
current conserved quantity un

j and its direct neighbors, un
j−1 and un

j+1, as the inputs and outputs the conserved quantity un+1
j of the next time

step. The ResBlock has the same architecture as in,38 only with the 2D convolution layers replaced by linear layers. The number in the
parentheses is the dimension of each Resblock output.

The Nh learned parameters by 𝚲𝜙 is then transferred into a diagonal matrix of Nh × Nh with the learned parameters
as its diagonal. The ResBlock has the same architecture as in,38 only with the 2D convolution layers replaced by linear
layers. Note that the number in the parentheses is the dimension of the output of each ResBlock, and the computation
procedure for grid cell j is applied to all grid cells. Since the computation of each node is independent of other cells except
the adjacent cells, we could train them in parallel to achieve high efficiency.

In addition, we implement two ways of padding to address different boundary conditions. For periodic boundary
conditions, we use the periodic padding, e.g., if j = 0, then uj−1 = uNg , where Ng is the number of the grid node. For
Neumann boundary conditions, we use the replicate padding, for example, if j = 0, then uj−1 = u0.

By introducing a hidden dimension Nh, we have increased the number of network parameters and enhanced the
network’s expressive capacity. Simultaneously, due to the expansion of the parameter space, there may exist multiple
numerical optimal solutions during the training process. However, by utilizing a regularized loss function for training, it
is possible to make the network parameters converge to a local optimal solution. It is worth noting that our objective is to
employ the network to fit the evolution of PDEs over time and space, without requiring the network parameters to have
a unique solution.

3.3 Training settings

Depending on the experiments, we construct data sets with analytical or numerical solutions calculated with a
high-resolution finite difference method. We then split the training data sets and the validation data sets with a ratio of
9 ∶ 1. The physical quantities solved in our experiments are of order O(1) and do not require a normalization step. We
train the network with a training set defined on a time span of Ttrain and then predict target values defined on a time span
of Tpredict, where Tpredict > Ttrain and Tpredict starts no earlier than the start of Ttrain. For all experiments, we use the Adam
optimizer41 with a learning rate of 𝛾 in Table 2, which decays with a multiplicative factor of 0.9 for every 5 − 20 epochs. In
all our experiments, we employ the Adam optimizer. This choice is motivated by its ability to adapt learning rates for each
parameter by considering the gradient history, leading to faster and more accurate convergence when compared to fixed
learning rate methods. With a batch size of 8 − 32, all models are trained for 100 epochs to guarantee convergence. Note
that we can trade training time for training accuracy, which means iteration of more epochs will result in higher accuracy.

Algorithm 1 summarizes the recursive relation from the input layer

u(t = 0) = [u1(t = 0), … ,uNg (t = 0)] (18)

to the output layer

û(t = Tspan) = [û1(t = Tspan), … , ûNg (t = Tspan)], (19)
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8 of 21 TONG et al.

T A B L E 2 Experimental set-up.

1C Linear Burgers 3C Linear Sod Tube 2D Linear 2D Nonliear

Boundary condition Periodic Periodic Neumann Neumann Periodic Periodic

Time step Δt 0.02 0.001 0.001 0.001 0.02 0.02

Space step Δx 0.01 0.01 0.005 0.005 0.01 0.02

Training time span 0.04 0.002 0.06 0.06 0.1 0.02

Predicting time span > 2 0.5 0.3 0.1 1 1

Data set samples 500 100 1000 2000 200 500

Data set generation Analytical Numerical Analytical Analytical Analytical Numerical

Components number Nc 1 1 3 3 1 1

Hidden dimension Nh 1 4 16 64 8 8

Algorithm 1. Recursive relation from the input layer to the output layer in RoeNet. Here, uj, j = 1, 2, … ,Ng represents
discretized points u in spatial coordinate

Input: uj(t = 0), j = 1, 2,… ,Ng, Tspan, Δt, Δx, L𝜃 , 𝚲𝜙
Output: ûj(t = Tspan) = uNt

j
Nt = floor(Tspan∕Δt) 𝜆r = Δt∕Δx u0

j = uj(t = 0), j = 1, 2,… ,Ng for n = 0 → Nt−1 do
Calculate Ln

j± 1
2
,𝜃

, 𝚲n
j± 1

2
,𝜙

by substituting un
j , j = 1, 2,… ,Ng, L𝜃 , and 𝚲𝜙 into (17) Calculate un+1

j , j = 1, 2,… ,Ng by

substituting un
j , Ln

j± 1
2
,𝜃

, 𝚲n
j± 1

2
,𝜙

, and 𝜆r into (16)

end

for each time step in RoeNet. Here Ng is the spatial grid size and Tspan is the time span Ttrain or Tpredict. As described in Alg.
1, feeding u(t = 0), Tspan = Ttrain, temporal stepΔt, spatial stepΔx, and the constructed networks L𝜃 and 𝚲𝜙 into RoeNet,
we could get predicted û(t = Ttrain). Then, we choose the mean-squared error (MSE) as our loss function.

RoeNet = ||u(t = Ttrain) − û(t = Ttrain)||MSE. (20)

4 EXAMPLES

We validate the ability of our model to solve different types of hyperbolic PDEs and predict the discontinuity in solu-
tions with partially or entirely smooth training data. The details of parameters used and important quantities about
hidden layers can be found in Table 2. Given that there is no analytical solution with explicit expression to the inviscid
Burger’s equation, we use the second-order central difference to generate data sets for the inviscid Burgers’ equation.
Since second-order central difference will cause numerical instability, we only use the data collected from a short time
span at the beginning of the simulation, where the solution remains numerically correct, to train our model. For all the
problems, we aim to solve spatial span from −0.5 to 0.5.

4.1 A simple example

Taking a linear hyperbolic PDE with one component (1C Linear in Table 2)

{
F = u,
u(t = 0, x) = e−300x2 (21)
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TONG et al. 9 of 21

F I G U R E 3 Comparison of RoeNet and Roe solver for solving a one component linear hyperbolic PDE (1C Linear in Table 2). (A) t = 0,
(B) t = 0.4, (C) t = 0.8, (D) t = 1.2. The legend “RoeNet” and “RoeNet (noise)” denote the networks are trained by the clean dataset and the
dataset with noise 𝜖 ∼ (0, 0.1), respectively.

in (1) as an example, we carry out a performance test of RoeNet. This hyperbolic PDE describes a Gaussian wave traveling
on a line at a constant speed. Figure 3 demonstrates the results of a Gaussian wave propagating over time using RoeNet
with a clean or noisy training data set, the Roe solver, and the analytical solution. The predicting results of RoeNet with
or without noise fit perfectly with the analytical results during the entire computational time domain. However, the
simulation results with the Roe solver get flattened and dissipated quickly over time. We remark that the prediction error
of RoeNet accumulates over time. However, such growth of numerical error is relatively slow compared to that using
traditional numerical methods. Therefore, RoeNet outperforms Roe solver with its accurate prediction.

4.2 Inviscid Burgers’ equation

Given a short window of continuous training data, we aim to use our model to predict the long-term future discontinuity
of a nonlinear hyperbolic PDE, the inviscid Burgers’ equation (Burgers in Table 2). Burgers’ equation is a fundamental
PDE occurring in various areas, such as fluid mechanics42 and traffic flows.43 This problem describes an initial wave
traveling in the one-dimensional domain at a speed that varies with time and space. Due to the compression of conversed
quantity, it could develop discontinuities such as shock waves.44 In this example, F in (1) and initial condition in (2) are
defined as

{
F = 1

2
u2
,

u(t = 0, x) = 1
2
+ sin(2𝜋x).

(22)
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10 of 21 TONG et al.

Figure 4 plots the predicting results of RoeNet solving inviscid Burgers’ equation with (22). Note that our training data
for u is an approximated solution generated with the numerical method and only defined on an extremely short time
period of t ∈ [0, 0.002], as shown in the thin blue curve in Figure 4A. From both Figure 4A,B, we can see that RoeNet
successfully learns the future discontinuities of the problem based only on the short-term continuous training data. This
is a significant improvement in solving prediction problems, as predicting long-term discontinuities from a short window
of a smooth dataset is generally considered impossible using traditional machine-learning approaches. In addition, as
shown in Figure 5, the predictions of RoeNet and the simulation results of Roe solver are in perfect agreement at the early
stage of the PDE evolution. This proves that RoeNet predicts the correct solutions for the evolving PDEs based on the
numerical dataset.

We remark that our use of training data relies on a time step span of 2 for predicting data spanning hundreds of
time steps. The strong generalization capabilities of our network stem from the integration of physical information into
its structure, ensuring the generation and preservation of discontinuities throughout the evolutionary process. From a
different perspective, we have improved a numerical solver, even without prior knowledge of its equation, by leveraging
data to achieve higher accuracy compared to traditional algorithms. This enhanced solver is suitable for computing the
long-term evolution of hyperbolic PDEs.

We plot the results of RoeNet for solving the Burgers equation with different initial conditions in Figure 6. First, we
train the neural network using the dataset generated by the initial condition in (22). Then we use the trained model to
predict the evolution of one dimensional Burgers equation with different initial conditions: 0.5 + cos(2𝜋), 0.5 − sin(2𝜋),
and 2 exp(−10x2) − 0.5. With this experiment, we showcase our trained RoeNet model can predict the evolution from
unseen initial conditions.

F I G U R E 4 Results of RoeNet for solving a one component nonlinear hyperbolic PDE (Burgers in Table 2). (A) Blue line and
rainbow-colored band denote the “short-term” continuous training data and the “long-term” predicting results of RoeNet, respectively. (B)
Contour map to show the discontinuity on the evolution of conserved quantity u.

F I G U R E 5 Comparison of RoeNet and Roe solver for solving a one component nonlinear hyperbolic PDE (Burgers in Table 2). (A)
t = 0, (B) t = 0.2, and (C) t = 0.4.
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TONG et al. 11 of 21

F I G U R E 6 Results of RoeNet for solving an one component nonlinear hyperbolic PDE (Burgers in Table 2) with three different initial
conditions (A) 0.5 + cos(2𝜋), (B) 0.5 − sin(2𝜋), and (C) 2 exp(−10x2) − 0.5. Here RoeNet model is trained with a dataset generated by the
evolution from the initial condition in (22).

4.3 Multi-component linear hyperbolic PDE

In addition, we apply RoeNet to solve a multi-component linear hyperbolic PDE, which shows how RoeNet successfully
resolves coupled multiple waves traveling along different characteristic direction vectors. Specifically, we define the flux
function F in (1) as a three-component linear function (3C Linear in Table 2) and set the initial condition in (2) as a
piecewise constant Riemann condition:

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

F(u) =
⎡
⎢
⎢
⎢
⎣

0.3237 2.705 5.4101
0.3597 −0.4388 −2.8777
−0.0144 0.0576 1.1151

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

u(1)

u(2)

u(3)

⎤
⎥
⎥
⎥
⎦

,

u(t = 0, x ≤ −0.1) = (1.99,−0.46, 0.98),
u(t = 0,−0.1 < x < 0.1) = (4.69,−1.90, 1.04),
u(t = 0, x ≥ −0.1) = (−1.99, 0.46,−0.98),

(23)

with u = [u(1),u(2),u(3)]T . The linear propagation of the three components is coupled with the equation advancing since
the Jacobian matrix of F is non-diagonal.

Figure 7 shows the initial conditions for u at t = 0 and the prediction results using RoeNet, numerical results using
Roe solver, and analytical solutions at t = 0.2 of the three components u(1), u(2), and u(3), respectively. Figure 7B–D shows
that the predictions with RoeNet match the analytical solutions perfectly, even with the discontinuous points traveling
over time. However, obvious errors around the discontinuous points within x ≈ ±0.3 occur with the simulations of Roe
solver.

4.4 Sod shock tube

We take the one-dimensional diatomic ideal gas problem to assess the performance of our model on solving
multi-component Riemann problems with nonlinear flux functions (Sode Tube in Table 2). Specifically, the system is
modeled by (1) with

{
u = (𝜌, 𝜌v, e)T ,
F = [𝜌v, 𝜌v2 + p, v(e + p)]T ,

(24)

where 𝜌 is the density, p is the pressure, e is the energy, v is the velocity, and the pressure p is related to the conserved
quantities through the equation of state p = (𝛾 − 1)

(
e − 0.5𝜌v2) with a heat capacity ratio 𝛾 ≈ 1.4. We apply our model to

the Sod shock tube problem,45 a one-dimensional Riemann problem in the form of (1) with (24). The time evolution of
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12 of 21 TONG et al.

F I G U R E 7 Comparison of RoeNet and Roe solver for solving a Riemann problem with three components and a linear flux function (3C
Linear in Table 2). (A) Initial conditions for u = [u(1),u(2),u(3)] at t = 0. (B), (C), and (D) plot the comparison of the prediction results using
RoeNet, numerical results solved with Roe solver, and the analytical solutions at t = 0.2 of the three components u(1), u(2), and u(3), respectively.

this problem can be described by solving the mass, momentum, and energy conservation of ideal gas inside a slender tube,
which leads to three characteristics, describing the propagation speed of various regions in the system.45 In Figure 8, we
plot the three components of the problem, at t = 0.1. Note that due to dissipation there is no sign of sonic glitch. Similar
to the conclusion drawn from the previous Section 4.3, RoeNet exhibits higher accuracy in predicting the discontinuities
of the nonlinear Riemann problem.

4.5 Two-dimensional examples

We show our model’s ability to predict higher-dimensional PDEs by learning and predicting the evolutionary behavior
of a two-dimensional wave. To solve two-dimensional PDEs, we introduce another pair of 𝚲𝜙 and L𝜃 networks to learn
those matrices in the second dimension and combine the vertical and horizontal increment of un together to predict un+1.
Specifically, the recursive relation of un in (16) is rewritten as follows:

un+1
i,j = un

i,j −
1
2
𝜆r(L1,n

i+ 1
2
,j,𝜃
)+(𝚲1,n

i+ 1
2
,j,𝜙
− |𝚲1,n

i+ 1
2
,j,𝜙
|)L1,n

i+ 1
2
,j,𝜃
(un

i+1,j − un
i,j)

− 1
2
𝜆r(L1,n

i− 1
2
,j,𝜃
)+(𝚲1,n

i− 1
2
,j,𝜙
+ |𝚲1,n

i− 1
2
,j,𝜙
|)L1,n

i− 1
2
,j,𝜃
(un

i,j − un
i−1,j)

− 1
2
𝜆r(L2,n

i,j+ 1
2
,𝜃
)+(𝚲2,n

i,j+ 1
2
,𝜙
− |𝚲2,n

i,j+ 1
2
,𝜙
|)L2,n

i,j+ 1
2
,𝜃
(un

i,j+1 − un
i,j)

− 1
2
𝜆r(L2,n

i,j− 1
2
,𝜃
)+(𝚲2,n

i,j− 1
2
,𝜙
+ |𝚲2,n

i,j− 1
2
,𝜙
|)L2,n

i,j− 1
2
,𝜃
(un

i,j − un
i,j−1), (25)
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TONG et al. 13 of 21

with

⎧
⎪
⎨
⎪
⎩

L1,n
i+ 1

2
,j,𝜃
= L1

𝜃
(un

i,j,u
n
i+1,j), 𝚲1,n

i+ 1
2
,j,𝜙
= 𝚲1

𝜙
(un

i,j,u
n
i+1,j),

L2,n
i,j+ 1

2
,𝜃
= L2

𝜃
(un

i,j,u
n
i,j+1), 𝚲2,n

i,j+ 1
2
,𝜙
= 𝚲2

𝜙
(un

i,j,u
n
i,j+1),

(26)

where L1
𝜃

and L2
𝜃

have the same network structure as L𝜃 in Figure 2; 𝚲1
𝜙

and 𝚲2
𝜙

have the same network structure as 𝚲𝜙 in
Figure 2. The rest training settings are identical to the one-dimensional examples.

For a linear example, we set F in (1) and the initial conditions in (4) as follows:

{
F = − 1

2
u,

u(t = 0, x) = sin[2𝜋(x1 + x2)],
(27)

where x = (x1, x2) is the two-dimensional coordinate. This system describes a trigonometrical function that travels on a
two-dimensional plane with a constant speed.

Figure 9 plots the prediction results of RoeNet for solving the two dimensional linear wave (4) with (27). Similar
to the one-dimensional examples, the two-dimensional RoeNet can learn from a limited amount of training data in a
short time span to predict a long time evolution of u with high stability, as shown in Figure 9A. We also compare the
prediction results of RoeNet with the ground truth solution in Figure 9B,C. The perfect match shows the high accuracy
of RoeNet.

F I G U R E 8 Comparison of RoeNet and Roe solver for solving a Riemann problem with three components and a nonlinear flux
function (Sod Tube in Table 2). (A), (B), and (C) plot the comparison of the prediction results using RoeNet, numerical results solved with
Roe solver, and the analytical solutions at t = 0.1 of the three components u(1), u(2), and u(3), respectively.

F I G U R E 9 Prediction results of RoeNet for solving a two dimensional linear wave (2D Linear in Table 2). (A) Contour of u(x1, x2) at
different time. Here, the blue-white part denotes the time span of the training data set, while the rainbow-colored part at the top is the
prediction by RoeNet. Predicted results (rainbow-colored contour map) and ground truth (blue mesh lines) are at (B) t = 0.2 and (C) t = 0.4,
respectively.
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14 of 21 TONG et al.

F I G U R E 10 Comparison of RoeNet (top) and Roe solver (bottom) for solving a two dimensional nonlinear wave (2D Nonlinear in
Table 2). The figures from left to right are t = 0, 0.5, and 1, respectively.

For a nonlinear example, we set F in (1) and the initial conditions in (4) as

{
F = 1

2
u2
,

u(t = 0, x) = 1
2

sin(2𝜋x1) sin(2𝜋x2),
(28)

where x = (x1, x2) is the two-dimensional coordinate. This system describes a trigonometrical function that travels on a
two-dimensional plane at varying speeds.

Figure 10 plots the comparison of RoeNet and Roe solver for solving a two-dimensional nonlinear hyperbolic PDE
(4) with (28). This example demonstrates that RoeNet is able to predict multidimensional nonlinear PDEs and obtains
results similar to those of Roe solver without the given governing equations.

5 ABLATION TEST AND COMPARISON

In this section, we validate our design of the architecture of RoeNet and the numerical settings of the training process
by comparing the effects of the usage of pseudoinverse, time-step size, and neural network size. The parameterization of
RoeNet offers considerable flexibility, accommodating a broad spectrum of potential configurations. During the simula-
tion process, special attention is devoted to the selection of an appropriate time step size. This selection aims to strike an
optimal balance between minimizing validation loss and maximizing computational efficiency, thus yielding robust and
reliable results within a reasonable time frame. In practical applications, the architecture of RoeNet can be further tai-
lored to meet specific requirements through the adjustment of the number of ResBlocks. The quantity of ResBlocks can
be modulated based on a multitude of factors, most notably the allowable error tolerance and the inherent complexity of
the hyperbolic PDEs under investigation. By adjusting the composition of ResBlocks, RoeNet can be adeptly calibrated to
offer a high level of precision while efficiently handling equations of varying complexity. We also compare our method
with PINNs using DeepXDE library,35 for solving hyperbolic PDEs.

5.1 Ablation test

5.1.1 Usage of pseudoinverse

We replace the inverse matrix in Roe solver with the pseudoinverse matrix in (14) to enhance the predictive model of
RoeNet. Without the pseudoinverse, our network will lean toward learning an optimal Roe decomposition on a given
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TONG et al. 15 of 21

dataset. However, no rigorous mathematical theory proves such a Roe decomposition exists to ensure the Roe solver con-
verges the hyperbolic PDEs’ analytical solution. With the pseudoinverse, we could convert the Roe matrix, which is strictly
a square matrix, to a high-dimensional matrix with hidden dimensions, thus greatly enhancing the expressiveness of the
network. From the eigendecomposition perspective, RoeNet approximates the evolution of a low-dimensional hyperbolic
PDE with a high-dimensional Riemann problem. Due to the high dimensionality of the approximated Riemann problem,
we could achieve much higher accuracy than that of a traditional algorithm.

In this example, we show the importance of pseudoinverse in our network design. Figure 11 depicts the predicted
results in the 3C Linear example in Section 4.3 using RoeNet with and without pseudoinverse, as well as the analytical
solutions at a different time of the u(2) component. As the figure shows, predictions made by RoeNet without pseu-
doinverse fluctuate around the ground truth and fail to capture the exact moments of discontinuities that occur, while
predictions made by RoeNet with pseudoinverse fit tightly to the ground truth. We remark that RoeNet with pseudoin-
verse outperforms RoeNet without pseudoinverse on accuracy, and the accuracy of prediction using RoeNet without
pseudoinverse decreases over time.

5.1.2 Time-step size

Figure 12 shows that in example 1C Linear in Section 4.1 with a fixed Ttrain = 0.1, the validation loss under the influence
of different time step on clean data sets and noisy data sets. In this example, we conclude that the validation loss decreases

F I G U R E 11 Comparison of prediction results of RoeNet with and without pseudoinverse, and analytical solutions for solving a
Riemann problem with three components and a linear flux function (3C Linear in Table 2). The figures show the second component of u at
(A) t = 0.1, (B) t = 0.3.

F I G U R E 12 Comparisons of validation losses with the same Ttrain = 0.1 and different Δt in the training process of the problem 1C
Linear in Table 2. The networks are trained by (A) the clean data set, (B) the data set with noise 𝜖 ∼ (0, 0.1).
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16 of 21 TONG et al.

as Δt decreases and converges at Δt ≈ 0.01. In general, a smaller Δt requires iterating more steps to reach the same time
span Tspan, and therefore requires a longer computation time. In the simulation, we choose a proper Δt to balance the
small validation loss with the desired computational efficiency.

5.1.3 Neural network size

We choose six-layer ResBloks as shown in Figure 2 to improve the expressiveness of the RoeNet. Since the RoeNet with
six-layer ResBloks is more complex than the Roe matrix, the computational complexity of RoeNet is greater than that of
the Roe solver. If we reduce the number of ResBlocks in RoeNet, the computation time of RoeNet can be significantly
reduced. For this purpose, we test 6-layers, 4-layers, and 2-layers of ResBlock variations of RoeNets on the prediction of
1C Linear in Figure 13. We conclude that the reduction in layers increased the prediction error of the system to a small
extent. However, it is still several orders of magnitude smaller than the Roe solver shown in Figure 3. In practice, we can
adjust the number of ResBlocks in RoeNet according to the tolerance of error and the complexity of the hyperbolic PDEs.
Overall, RoeNet has slightly greater computational requirements compared to the Roe solver, but both of them belong to
the same order of computational complexity.

5.1.4 Learning rate

Figure 14 presents an analysis of the error metrics associated with the utilization of RoeNet under varying learning rates,
specifically within the context of Example 1C Linear, as detailed in Section 4.1. It is noteworthy that the error magni-
tudes are generally minimal when the learning rates are confined to a range between 0.001 and 0.05. However, caution
is advised for learning rates exceeding 0.05, as these values exhibit a tendency to overshoot the optimal solution, thereby
undermining the reliability of the model’s predictions.

5.1.5 Initial condition

In Figure 15, a comparative study is conducted to assess the predictive capabilities of RoeNet and the traditional Roe solver
under differing initial conditions. For the purpose of this analysis, the initial condition employed during the training
phase corresponds to that of Example 1C Linear, as specified in Section 4.1. Conversely, a sine function serves as the
initial condition for the predictive phase. Figure 15A offers a visual representation that clearly highlights the superior
accuracy of RoeNet’s predictions in comparison to those generated by the Roe solver. Further insights can be observed
from Figure 15B, which demonstrates that RoeNet consistently outperforms the Roe solver in terms of prediction error,
across all observed time intervals.

F I G U R E 13 Comparisons of the prediction (A) results and (B) errors using RoeNet with different neural network sizes.
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TONG et al. 17 of 21

F I G U R E 14 Errors using RoeNet with different learning rates.

F I G U R E 15 Comparisons of the prediction (A) results when changing the initial condition and (B) errors using RoeNet and Roe
solver, respectively.

5.1.6 Computational cost

To assess the computational efficiency and accuracy of RoeNet in comparison to the Roe solver, we performed an abla-
tion test on the 1C Linear problem. In this test, RoeNet was evaluated using a grid size of 100, whereas the Roe solver
underwent assessment at grid sizes of 100, 1000, and 2000. The data presented in Figure 16 provides valuable insights into
the performance of both approaches. When working with the same grid size of 100, RoeNet exhibits a higher computa-
tional cost compared to Roe solver. However, despite this increased computational demand, RoeNet offers a significant
advantage in predictive accuracy, with error rates that are several orders of magnitude lower than those of Roe solver.

Subsequently, as the grid size for the Roe solver increases, there is a proportional escalation in computational cost.
Notably, when the grid size reaches the order of O(1000), the computational cost of the Roe solver surpasses that of RoeNet
with a grid size of 100. While there is an observable reduction in prediction error with the enlargement of the Roe solver’s
grid size, the achieved accuracy still falls short of outperforming RoeNet with a grid size of 100. Despite the enhanced
resolution offered by the larger grid sizes in the Roe solver, the prediction error consistently remains higher than that of
RoeNet, underscoring RoeNet’s superior effectiveness in delivering precise predictions.

5.2 Comparison with other methods

Generally, current methods based on neural networks could only solve a given PDE with the aid of a dataset or predict
only continuous solutions of the PDEs. For the first class of neural networks, typical ones are PINNs.26 Using PINNs
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18 of 21 TONG et al.

implies the networks need to be aware of the pre-established PDE model they are solving and require periodic feedback
from the pre-established model on the loss, while RoeNet only requires training data sets without the knowledge of
equations and feedback from the knowledge model. Moreover, for better convergence, the implementation of PINNs
usually incorporates a Hessian-based optimizer like L-BFGS, which implies a longer training time and the usage of a
closure function in optimization. While RoeNet mainly relies on gradient-based optimizers like SGD.

Without a given governing equation, conventional neural networks usually have difficulty in predicting the generation
and evolution of discontinuous solutions. We especially showcase our model’s unique ability to acomputationplish tasks
that traditional machine learning approaches fail to complete. We show that our proposed RoeNet outperforms PINNs,35

especially at larger t that is not included in training data. Figure 17 plots the comparison of the numerical results solved
with Roe solver, as well as prediction results using RoeNet and PINNs at a different time of the problems 1C Linear in

F I G U R E 16 Comparisons of (A) computational costs and (B) prediction errors between RoeNet using a grid size of 100 and Roe
solvers employing grid sizes of 100, 1000, and 2000 for the 1C Linear problem.

F I G U R E 17 Comparion of the numerical results solved with Roe solver, prediction results using RoeNet and PINNs35 at (A) t = 0, (B)
t = 0.4, (C) t = 0.8 of the problem 1C Linear in Table 2 and (D) t = 0, (E) t = 0.2, (F) t = 0.4 of the problem Burgers in Table 2.
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Section 4.1 and Burgers in Section 4.2. It shows that RoeNet, with no initial knowledge of the equations, outperforms
PINNs even for the future t that is not included in the training data.

In contrast to conventional numerical approaches, RoeNet serves as a data-driven solver, eliminating the need for
prior knowledge regarding the system’s evolution equation. Moreover, RoeNet is designed with an optimization-based
approach for constructing its numerical scheme, and the optimization space of its numerical scheme fully encompasses
that of the Roe solver. Consequently, compared to traditional numerical methods, it can provide more precise simulations
for PDE evolution.

6 CONCLUSION

We present the RoeNet, a neural network analogous to a numerical Roe solver that could predict discontinuity in the
future based on partially or entirely smooth data sets. Our numerical experiments show that RoeNet outperforms both
the traditional Riemann-type numerical solver and the recent deep-learning solver in accuracy, robustness, and ability to
predict unknown discontinuity in the future. Our ablation tests further demonstrate these computational merits drawn
from our templatized prior embedding, whose scheme preserves the mathematical properties of the original Roe tem-
plate. Our novel method using Roe template with pseudoinverse embedding is able to expand the parameter dimensions
and conduct long-term predictions of discontinuity, making a significant progress in building prior-embedded machine
learning methods to predict long-term future dynamic behaviors that are invisible in the given training data.

Compared to the Roe solver, RoeNet’s primary limitation lies in its challenges when dealing with intricate computa-
tional domains and boundary conditions. The current network architecture is designed based on a deep convolutional
neural network tailored for uniform grids, making it highly challenging to extend this network to complex scenar-
ios. Furthermore, given its relatively substantial computational scale, it does not currently accommodate complex
high-dimensional cases. Taking a broader perspective, RoeNet exhibits the following supplementary limitations. With
the use of the templatized neural network architecture based on the traditional numerical Roe solver, we limit the
scope of solvable systems to hyperbolic PDEs. Thus, it fails to address other physical systems, such as elliptic and
parabolic equations. Also, our current RoeNet model discretizes the evolving variables on a regular orthogonal grid,
leaving the systems defined an irregular domains out of consideration. Moreover, despite that our neural network takes
advantage of the spatial discretization of the flux function in the traditional numerical Roe solver, temporal discretiza-
tion is designed to work with the first-order Euler scheme. Similar to the traditional Roe solver, RoeNet requires a
small time step in the training and the predicting process, and the preference for a small time step, as shown in the
ablation test 5, further proves this. Moreover, the Roe solver is a discretization of the hyperbolic PDE in differential
form. Discretization methods based on integral forms, such as HLLC,46 may inspire us to construct more sophisti-
cated neural network methods. Finally, we remark that many approximate Riemann solvers often find entropy-violating
solutions to nonlinear hyperbolic PDEs. We did not observe significant entropy violation in the prediction results of
RoeNet, which is likely because RoeNet introduces hidden dimensions to avoid matrix-based decomposition in Roe
solver. In the future works, we plan to enhance RoeNet with the entropy fix technique to improve the robustness of the
network.

A broad range of applications and extensions are yet to be explored. One of the interesting future directions to explore
is to utilize the current model to predict real-world problems in fields like traffic flow, long-term meteorological pre-
diction, and financial analysis. Moreover, the design of our templaterizale neural network architecture that combines
modernized mathematical priors and data-driven paradigms opens up new possibilities for tackling complex physics
problems by embedding structured priors. Broadly speaking, any prior template, including but not limited to numeri-
cal stencil generators and design principles, can empower high-performance learning pipelines. We envision a series of
future works based on our templaterizable prior embedding scheme to bridge scientific computing and machine learning,
such as templaterizing the high-resolution,47 structure-preserved,48–50 and energy-conserved51 schemes in computational
physics.

In forthcoming research, we aim to delve deeper into additional two-dimensional case studies, specifically those gov-
erned by the two-dimensional Euler equations. Recent scholarly work, notably by Mao et al. and Jagtap et al., attests
to the promising potential of PINNs. The study by Mao et al. investigates the use of PINNs for approximating 2D Euler
equations to model complex aerodynamic flows, including oblique shock waves.30 The research demonstrates that PINNs
are effective in capturing these 2D Euler flow phenomena with only a sparse set of data points. Jagtap et al. employs PINNs
and their extended version, extended PINNs (XPINNs), to solve complex inverse problems related to 2D Euler equations
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for modeling supersonic compressible flows in aerospace applications, including expansion waves and oblique and bow
shock waves.52 Traditional methods often struggle with these ill-posed problems, but PINNs and XPINNs succeed by
incorporating domain decomposition, enforcing entropy and positivity conditions on density and pressure.

These studies have effectively showcased PINNs’ capability in handling intricate two-dimensional problems. Con-
currently, we foresee that RoeNet might offer a new perspective and deliver robust performance on these problems. A
comprehensive comparison between PINNs and RoeNet is delineated in Section 5.2. It is crucial to note that the util-
ity of PINNs necessitates their integration with a pre-established PDE model, demanding periodic updates to the loss
function based on this model. Conversely, RoeNet operates independently of such equation-based feedback, requiring
only training datasets for its functionality. Additionally, PINNs commonly employ Hessian-based optimizers such as
L-BFGS, which tends to prolong training times and necessitates the use of closure functions in optimization processes. In
contrast, RoeNet predominantly utilizes gradient-based optimizers like Stochastic SGD, streamlining the computational
workload.
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