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We propose a novel quantum-inspired deep neural network framework (QIDNNF) for solving partial differential equations
(PDEs), specifically Schrödinger equation and those derived through Schrödingerization. QIDNNF integrates fundamental quan-
tum mechanics principles, including global phase invariance and normalization, to ensure unitary quantum dynamics and the
preservation of conservation laws. Through numerical experiments, QIDNNF exhibits superior stability over finite difference
schemes for large time steps, improved long-term accuracy over neural ordinary differential equations (Neural ODEs) and
physics-informed neural networks (PINNs), and predictive precision unaffected by variations in initial phase angles. Further-
more, QIDNNF effectively models real-world physical systems, including 1D nonlinear wave propagation and 2D and 3D flow
evolution, demonstrating their accuracy and consistency in simulating complex physical phenomena.
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1 Introduction

Solving partial differential equations (PDEs) and ordinary
differential equations (ODEs) is essential for modeling a
broad range of physical phenomena such as fluid dynamics,
heat transfer, and electromagnetic processes [1]. Two main
computational approaches are typically employed: physics-
based numerical methods [2] and data-driven machine learn-
ing (ML) techniques [3]. While classical numerical meth-
ods, such as finite difference and finite element methods,
have proven effective in many cases, they may face chal-
lenges when dealing with nonlinearities, multiscale effects,
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and the growing computational demands of complex sys-
tems [4-8]. ML techniques, particularly neural networks,
present a promising alternative by learning from datasets
to uncover complex patterns without depending on explicit
mathematical formulations. This capacity for generalization
across diverse systems, coupled with their efficiency in han-
dling large-scale problems, has led to the growing adoption
of ML for solving PDEs. Applications of this approach ex-
tend across a wide range of fields, including fluid dynam-
ics, materials science, and other complex domains [9-13].
Nonetheless, ML methods are constrained by factors such
as reliance on large, high-quality datasets, interpretability is-
sues, and high training costs.
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While numerical methods emphasize precision and con-
trollability, and ML focuses on flexibility and computational
efficiency, the synergistic potential of their complementary
strengths has driven increasing interest in hybrid methodolo-
gies that combine physical principles with neural networks
for solving PDEs [14]. Physics-informed neural networks
(PINNs), introduced by Raissi et al. [15], incorporate physi-
cal equations into the network’s loss function, enabling solu-
tions to problems governed by differential equations. PINNs
have shown success in areas such as fluid dynamics [16], heat
conduction [17], and solid mechanics [18, 19]. However,
challenges continue to exist when scaling these approaches
to tackle high-dimensional or complex systems [20, 21]. Be-
yond generic neural networks, specialized frameworks have
been developed to enhance the modeling of constrained and
domain-specific physical systems. Neural ordinary differ-
ential equations (Neural ODEs) [22-24] capture continuous-
time dynamics by learning time derivatives, providing a nat-
ural and flexible framework for systems governed by ODEs.
Symplectic networks, specifically designed for Hamiltonian
systems [25], ensure the preservation of symplectic struc-
tures, enabling accurate and energy-conserving simulations
over extended time scales. Roe network [26], tailored for hy-
perbolic conservation laws, delivers enhanced stability and
precision, particularly in resolving complex phenomena such
as shock waves and discontinuities, as well as other networks
designed for structural dynamics [27, 28].

Building on the Schrödingerization framework proposed
by Jin et al. [29-31], which unifies classical ODEs and
PDEs within the structure of Schrödinger equation for mod-
eling complex nonlinear systems, we introduce the quantum-
inspired deep neural network framework (QIDNNF). This
framework predicts the evolution of Schrödinger equation,
including those derived from general ODEs and PDEs via
Schrödingerization, while rigorously preserving fundamental
quantum principles such as phase invariance and normaliza-
tion.

The QIDNNF utilizes a two-step data flow methodology
to enforce distinct, non-interacting constraints. In the first
step, we apply an integral averaging technique to smooth
high-frequency phase oscillations arising during the quan-
tum state’s evolution, approximating them through a summa-
tion process that aggregates rapid phase changes over time or
space. This averaging reduces the impact of oscillations and
mitigates fluctuations that could destabilize the numerical so-
lution, thereby enhancing the system’s stability and ensur-
ing the physical consistency of the quantum state throughout
its evolution. In the second step, we employ a semi-implicit
scheme that implicitly handles certain evolution terms on the
right-hand side of the Schrödinger equation, thereby avoid-
ing the numerical instability and error accumulation typical

of explicit methods through implicit wave function updates
at each time step. This approach effectively preserves the
wave functions normalization over large time steps, ensuring
the physical consistency of the quantum system, while also
facilitating nonlinear scaling of input data without compro-
mising accuracy. By maintaining the independence of these
two steps, we ensure that the constraints do not interfere with
each other, allowing each aspect to be independently opti-
mized, resulting in a more efficient and accurate solution to
the Schrödinger equation.

To evaluate the effectiveness of this method, we conduct a
series of numerical experiments across various problem sets,
comparing its performance with established techniques in-
cluding fourth-order Runge-Kutta (RK4), Neural ODEs, and
PINNs, highlighting its robustness and accuracy. We further
extend the application of QIDNNF to a range of PDE prob-
lems, encompassing linear and nonlinear systems, as well as
high-dimensional and time-dependent scenarios. Their ef-
fectiveness is demonstrated through test cases such as vortex
dynamics, nonlinear wave propagation, and incompressible
Schrödinger flow, demonstrating QIDNNFs ability to accu-
rately simulate complex physical phenomena while maintain-
ing physical consistency.

This work introduces QIDNNF as a computational
methodology for solving PDEs, grounded in physical prin-
ciples that ensure consistent enforcement of constraints
throughout the solution process. We provide numerical ex-
amples comparing QIDNNF with traditional methods, such
as finite difference methods, using benchmark problems that
include linear and nonlinear fluid flows with time-dependent
dynamics. We apply QIDNNF to a range of PDEs, including
linear, nonlinear, high-dimensional, and time-dependent sce-
narios, demonstrating their effectiveness through test cases
such as vortex dynamics, nonlinear wave propagation, and
incompressible Schrödinger flow.

The paper is structured as follows: sect. 2 introduces the
mathematical framework for the Schrödinger equation and
the QIDNNF architecture. Sect. 3 presents the training and
evaluation of QIDNNF on benchmark problems, highlighting
its advantages over traditional methods. Sect. 4 explores the
application of QIDNNF to different physical problems. Sect.
5 summarizes the key findings, addresses the limitations of
the proposed approach, and outlines potential directions for
future research.

2 Mathematical framework

This section outlines the mathematical foundations of
QIDNNF, starting with the Schrödingerization process that
transforms PDEs into a Schrödinger-like form. Two funda-
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mental quantum principlesłphase invariance and normaliza-
tionłare integrated into the neural network architecture to en-
sure the physical accuracy of the solutions. Building on these
elements, QIDNNF is presented as a robust method for solv-
ing PDEs while preserving key quantum properties, such as
probability conservation and coherent wave function evolu-
tion, throughout the solution process.

2.1 The Schrödinger equation and PDEs

We present a neural network-based methodology for address-
ing a diverse range of PDEs. The general form of a PDE is
given by

∂u
∂t
= f (Du,u, x, t) , (x, t) ∈ Rnx × [0,T ), (1)

with the initial condition u(x, 0) = u0(x) and appropri-
ate boundary conditions [1]. Here, u(x, t) denotes an nu-
dimensional vector field, D represents the spatial operator,
and f defines the function governing the time evolution of u.

Directly solving PDEs typically involves discretizing both
the spatial and temporal domains, a process that can be com-
putationally demanding, especially for high-dimensional or
time-dependent systems. Moreover, the presence of non-
linear terms in many PDEs further complicates the solu-
tion process. To mitigate these challenges, we employ
Schrödingerization, a technique that transforms the original
PDE variables u into a wave function ψ. This reformulation
recasts the problem into a form governed by the Schrödinger
equation, thereby allowing us to exploit the well-established
mathematical framework of quantum mechanics. The linear
structure of the Schrödinger equation simplifies the treatment
of nonlinearities, while its stability properties render the ap-
proach more numerically tractable.

Under the Schrödingerization process, the transformation
is defined as

ψ = S (u) , (2)

where ψ represents the wave function, and S is a mapping
function that transforms the original PDE variables u into
a suitable form that allows the problem to be expressed in
terms of the Schrödinger equation. This transformation en-
ables numerical methods and neural networks to inherit the
favorable properties of quantum mechanics.

The Schrödinger equation governs the evolution of the
wave function ψ [32],

i~
∂

∂t
ψ = Hψ, (3)

with the initial condition ψ(0) = ψ0. Here, ψ =

(ψ1, . . . , ψnψ)T is an nψ-dimensional complex vector, and H is

the Hermitian operator corresponding to the system’s Hamil-
tonian, governing its total energy dynamics. i is the imagi-
nary unit, and ~ is Plancks constant, which we set to unity
for simplicity.

2.2 Quantum principles

To model wave function evolution governed by eq. (3) using
neural networks, we adopt the Neural ODEs formulation:

dψ
dt
= F θ (ψ, t) , (4)

where ψ represents the discretized wave function, and θ are
the neural network parameters. In this formulation, spatial
coordinates x and differential operators are approximated by
discrete grids and neural network representations, respec-
tively.

Although this approach enables the numerical solution of
differential equations using methods such as Euler or Runge-
Kutta, it does not inherently ensure that the physical con-
straints required by quantum systems are satisfied. In the
absence of these constraints, such as wave function normal-
ization, the numerical predictions of the wave functions evo-
lution may diverge from the true quantum dynamics, unless
these constraints are explicitly incorporated into the model.
To address this, we summarize the two key principles that
govern quantum state evolution.
Property 1 (Global phase invariance) In quantum mechan-
ics, the wave function remains invariant under global phase
transformations, meaning that multiplying the wave function
by a global phase factor eiϕ does not alter its physical va-
lidity. Specifically, if ψ is a solution to eq. (3), then eiϕψ is
also a valid solution for any global phase ϕ. This is because
the global phase does not affect observable quantities such as
probability densities, which depend on the absolute square
of the wave function |ψ|2. The phase factor, being a complex
number of unit magnitude, leaves these physical properties
unchanged. This invariance reflects a fundamental symme-
try in quantum systems, where different representations of
the same quantum state, differing only by a global phase, are
considered physically equivalent. Hence, the global phase of
a wave function is unobservable and does not influence the
dynamics described by the Schrödinger equation.
Property 2 (Normalization preservation) In quantum me-
chanics, the Schrödinger equation preserves the normaliza-
tion of the wave function over time due to its unitary nature.
The wave function ψ encodes the probabilities of a quantum
system, and its normalization ensures that the total proba-
bility of finding the particle in all space sums to 1. If the
wave function is initially normalized, meaning ∥ψ0∥ = 1 at
time t = 0, the Schrödinger equation guarantees that this nor-
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malization is maintained as the system evolves. This occurs
because the evolution governed by the Schrödinger equation
is unitary, meaning it conserves the norm of the wave func-
tion at all time. Thereby, the wave function at any later time
will also satisfy ∥ψ(t)∥ = 1, ensuring the conservation of total
probability density throughout the system’s dynamics.

2.3 Quantum-inspired deep neural network framework

We introduce the QIDNNF that merges the principles of
quantum mechanics with traditional ODEs through neural
networks, providing an approach for modeling dynamic sys-
tems that uphold quantum mechanical consistency while
harnessing the expressive capabilities of neural networks.
Figure 1 [33] compares three methodologies for solving
Schrödinger’s equation: quantum circuits, classical neural
networks, and the proposed QIDNNF. Quantum circuits the-
oretically provide a robust framework for accuracy and phys-
ical consistency by inherently adhering to quantum princi-
ples. Classical neural networks, while powerful, fail to re-
spect these principles, often producing results that deviate
from physical laws, such as non-conservation of probability
or energy. In contrast, QIDNNF integrates quantum mechan-
ical constraints, including phase invariance (Property 1) and
normalization (Property 2), into their architecture, enabling
them to achieve solutions as accurate as those from quantum
circuits. This makes QIDNNF both computationally efficient

and consistent with quantum mechanical principles, bridging
the gap between classical computation and quantum accuracy
while mitigating the deficiencies of standard neural networks
in solving physics-informed problems.

The QIDNNF employs a two-step methodology. First,
an integral averaging technique is applied to smooth out
rapid phase oscillations in the wave function over a finite in-
terval, thereby mitigating numerical errors caused by high-
frequency fluctuations. Second, a semi-implicit scheme is
utilized to balance explicit and implicit updates, preserving
the normalization of the wave function at each time step
while allowing larger time steps without compromising ac-
curacy or normalization.

Phase integration operation We define the network F θ to
incorporate a phase parameter α into the existing network
Gθ and perform a periodic integral over the full phase cycle
[0, 2π]. Specifically, the operation is given by

F θ (y, t) =
∫ 2π

0
Gθ
(
yeiα, t

)
e−iα dα. (5)

Theorem 1 The network designed within the QIDNNF sat-
isfies the phase invariance property (Property 1).

Proof To establish global phase invariance, we must
demonstrate that for any global phase p, the network output
remains invariant under the transformation yeip. Specifically,
we aim to prove

Figure 1 (Color online) Comparison of methodologies for solving Schrödinger equation. Quantum circuits [33] theoretically provide a robust framework
for accuracy and physical consistency by inherently adhering to quantum principles. Classical neural networks, while effective, often violate these principles,
leading to non-physical results. In contrast, QIDNNF integrates quantum mechanical constraints, such as normalization and phase invariance, achieving
accuracy comparable to quantum circuits.
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F θ

(
yeip, t

)
= eipF θ (y, t) . (6)

We compute the integral as follows:

F θ

(
yeip, t

)
=

∫ 2π

0
Gθ
(
yei(α+p), t

)
e−iα dα. (7)

By making the change of variables β = α + p, we obtain

F θ

(
yeip, t

)
= eip

∫ 2π

0
Gθ
(
yeiβ, t

)
e−iβ dβ. (8)

This demonstrates that the network is invariant under
global phase transformations, thereby confirming the phase
invariance property.

Normalization operation To ensure the preservation of
wave function normalization during time evolution, we in-
troduce a normalization factor λ. The wave function update
rule is given by

yn+1 = λyn + Q(F θ, yn, tn,∆t), (9)

where Q represents the time integration operator. For in-
stance, in the case of the Euler method, we have

Q(F θ, yn, tn,∆t) = ∆tF θ(yn, tn).

Assuming that the wave function at the previous time step
is normalized (∥yn∥ = 1), the normalization factor λ is com-
puted as

λ =

√
1 − [Im(ynQ)]2 − Re(ynQ), (10)

where Q represents the complex conjugate of Q; Re and Im
denote the real and imaginary parts, respectively.

Theorem 2 The calculation of λ in eq. (10) ensures that the
wave function obtained from eq. (9) satisfies the normaliza-
tion property (Property 2).

Proof To verify the normalization condition, we compute
the squared norm of yn+1:

∥yn+1∥2 =
(
λyn + Q

)
(λyn + Q) . (11)

By substituting the assumption that ∥yn∥ = 1, we find that
the normalization factor λ is determined to satisfy ∥yn+1∥ = 1,
thereby preserving the normalization at each time step.

We remark that by combining phase invariance and nor-
malization operations, QIDNNF ensures its predictions ad-
here to the foundational principles of quantum mechanics.
Embedding these principles extends the capabilities of tradi-
tional ML models, enabling QIDNNF to deliver accurate and
physically consistent predictions for both quantum-inspired
and classical systems.

As shown in Figure 2, the QIDNNF follows a structured
operational flow to ensure accurate and physically consis-
tent predictions. It begins with generating a high-precision
dataset of wave function evolution using numerical methods,
ensuring accurate ground truth data for training. This dataset
is fed into the neural network, where predictions of wave
function evolution are compared to the ground truth through
a loss function that incorporates physical constraints, such
as phase invariance and normalization. Training iteratively
minimizes the loss, and once the loss function converges, the
network is considered well-trained and ready for prediction.
The initialized wave function is then input into the trained
network, which predicts the wave function’s evolution effi-
ciently and accurately. Finally, reverse Schrödingerization is
applied to map the predicted wave function back to physi-
cal fields of interest, such as energy or density, ensuring the
outputs remain interpretable and physically meaningful.

3 Performance verification

We conduct a series of numerical tests to validate the pre-
dictive capabilities of QIDNNF in modeling the evolution of
complex dynamical systems while ensuring physical consis-
tency and computational efficiency. In this benchmark, we
evaluate QIDNNF on a linear system of two coupled wave
functions governed by a constant Hamiltonian,H = σ1+σ3,
where σ1 and σ3 are Pauli matrices representing coupling
and energy level differences, respectively. The initial con-
ditions for the system are specified as ψ0 = eiθ

[
ψ0

1 ψ
0
2

]
,

with θ representing the initial global phase. The initial wave
functions are given by

[
ψ0

1 ψ
0
2

]
= 1√

2

[
i 1
]
. This setup

tests QIDNNF’s ability to respect phase invariance, handle
complex-valued dynamics, and maintain normalization dur-
ing wave function evolution. By comparing the predicted
wave function against high-precision numerical solutions,
the benchmark assesses QIDNNF’s accuracy, consistency
with quantum mechanical principles, and ability to model
coupled dynamics efficiently. We note that all examples in
this paper were performed on the same computer hardware,
consisting of an Intel Core i9-14900K processor running at
3.20 GHz, 64 GB of RAM, and an NVIDIA GeForce RTX
4080 SUPER GPU with 32 GB of memory.

3.1 Training settings

Algorithm 1 outlines the procedure for advancing the wave
function in QIDNNF while maintaining phase invariance and
normalization. The process begins with initializing an accu-
mulator s to collect contributions from phase integration,
calculating the integration step size h = 2π/N int, and setting
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Figure 2 (Color online) Operational flow of QIDNNF: (a) data generation, (b) training QIDNNF, and (c) prediction. High-precision numerical methods
generate the training dataset for wave function evolution as accurate ground truth data. A loss function, incorporating physical constraints like phase invariance
and normalization, guides training by comparing predictions to the ground truth. Once trained, the model takes an initial wave function as input to efficiently
predict its evolution under any global phase transformation. Reverse Schrödingerization then maps the predicted wave function back to interpretable and
physically meaningful fields of interest.

Algorithm 1 Phase-averaged and normalization forward evo-
lution for QIDNNF
Input: ψn, Nint, ∆t;
Output: ψn+1;
1: s← 0; h← 2π/Nint; α← h;
2: for i← 0 to Nint − 1 do
3: s← s + ∆t ·Gθ

(
ψneiα

)
e−iα; ◃ Gθ: Neural network

4: α← α + h;
5: end for ◃ Numerical phase integration

6: λ←
√

1 − [Im(ψn s)
]2 − Re(ψn s); ◃ Normalization

7: ψn+1 ← λψn + s ◃ Euler method

the initial phase α = h. The algorithm then iterates over N int

steps, where, in each step, the wave function is modified by a
phase factor eiα and passed through the neural network Gθ to
compute its contribution to the evolution. This contribution
is then adjusted by the conjugate phase factor e−iα to ensure
proper integration, and the result is accumulated into s. After
this, a normalization factor λ is computed based on the cur-
rent wave function and the integrated contributions, ensuring
that the wave function retains its unit norm. Finally, the next
state of the wave function ψn+1 is calculated using the Euler
method by combining the scaled current wave function λψn

with the accumulated contributions s.
All training data are generated using the RK4 method. For

the QIDNNF, the wave function is computed over a specified
time interval, with an initial phase angle θ = 0 and a time step
size of ∆t = 0.01. Data pairs are then constructed by taking

the wave function at the previous time step as the input and
the wave function at the subsequent time step as the output.
A dataset is built using 400 such data pairs, which are then
randomly shuffled. The dataset is split into a training set and
a test set in a 9:1 ratio. The training process employs a batch
size of 128 and spans 2000 epochs. The network comprises
four fully connected layers, each with 16 neurons, and uti-
lizes a Sigmoid activation function. The Adam optimizer is
applied with an initial learning rate of 0.001, which decays
by a factor of 0.9 every 50 epochs during training.

We conduct an ablation study to investigate the impact of
different loss functions on both the training and validation
performance of the proposed network [34, 35]. During both
phases, we alternate between L1 loss and mean squared error
(MSE) loss [36], as depicted in Figure 3. The results show
that both loss functions lead to satisfactory convergence, but
the network trained with L1 loss exhibits faster convergence
on the validation data compared to the network trained with
MSE loss. Specifically, L1 loss accelerates the learning pro-
cess, reaching optimal performance more quickly, whereas
MSE loss requires more epochs to achieve similar accuracy.
These findings demonstrate that L1 loss not only speeds up
the training process but also enhances validation efficiency,
making it particularly beneficial for applications.

We investigate the effect of various network configurations
on training performance, using L1 loss for both training and
validation. As shown in Figure 4(a), the number of neurons,
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Figure 3 (Color online) Convergence of the validation loss for different
loss functions: (a) L1 loss, and (b) MSE loss. The dark blue and orange
curves represent training with L1 and MSE loss functions, respectively.

Figure 4 (Color online) Loss convergence for various network configura-
tions: (a) impact of varying the number of neurons in the hidden layers, and
(b) influence of different activation functions.

Nh, in the hidden layers can affect the network’s ability to
learn. Specifically, a limited number of neurons restrict the
network’s learning capacity. However, as Nh increases, the
network rapidly converges to a stable solution, mitigating is-
sues like vanishing gradients, similar to the behavior seen in
ResNet architectures. In Figure 4(b), we explore the influ-
ence of different activation functions, using Nh = 16. The
results demonstrate that Tanh, ReLU, and Sigmoid activation
functions all lead to stable convergence.

To further evaluate the performance of QIDNNF, we in-
crease the time step and compare its results with those of
the RK4 method. Figure 5 presents the wave function evolu-
tion over 200 time steps with ∆t = 0.5. At this larger time
step, the RK4 method suffers from numerical dissipation, in-
dicating its limitations in long-term dynamics. In contrast,
QIDNNF accurately reproduces the wave function evolution,
demonstrating its robustness and stability for long-term pre-
dictions. This is attributed to QIDNNF’s ability to combine
data-driven optimization with embedded physical principles,
making it well-suited for applications requiring high fidelity
over extended time periods. These results highlight the supe-
riority of QIDNNF in preserving wave function normaliza-
tion and handling variations in initial phase conditions.

Figure 5 (Color online) Wave function predictions with a large time step
of ∆t = 0.5: (a) RK4 and (b) QIDNNF. The dark blue and orange curves
represent the trajectories of particles 1 and 2, respectively.

3.2 Comparison of QIDNNF with Neural ODEs and
PINNs

We compare the predictive performance of several methods,
using the RK4 method with a small time step of ∆t = 0.01
as the reference. The methods considered include QIDNNF,
Neural ODEs, and PINNs, with all models trained using L1
loss, the Sigmoid activation function, and a hidden layer size
of Nh = 16. Both QIDNNF and Neural ODEs predict the
wave function at subsequent time steps based on the wave
function at previous time steps, whereas PINNs directly pre-
dict the corresponding wave function from the input time.

Figure 6 compares the predictions of wave function evo-
lution from various methods for the same initial global phase
angle (θ = 0) as the training data. For PINNs, the loss
function consists of both data and physical components, ex-
pressed as L = Ldata + αLphysical, where α is a weight coef-
ficient for the physical loss term. When α = 0, the physical
loss is omitted, resulting in a purely data-driven model. The
results reveal differences in performance among the meth-
ods. Neural ODEs predict wave function increments using
an Euler-based time-stepping scheme. However, relying on
repeated incremental updates causes small errors to accumu-
late over time, leading to noticeable deviations from the true
trajectory unless extremely small time steps are used, sig-
nificantly increasing computational cost. Although PINNs
incorporate a physical loss term, the lack of a time inte-
gration process hinders their ability to optimize effectively,
especially with limited data. By directly predicting specific
values instead of incrementally modeling wave function evo-
lution, PINNs fail to capture dynamic behavior accurately,
causing lagging predictions. As the loss weight α increases,
prioritizing physical consistency over data accuracy, overfit-
ting to physical loss exacerbates trajectory distortion. The
combined effects of lagging predictions and trajectory distor-
tion underline the limitations of PINNs in accurately model-
ing dynamic temporal behaviors, particularly when physical
constraints dominate the optimization process. In contrast,
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Figure 6 (Color online) Comparison of wave function trajectories predicted
by different methods for an initial phase angle of θ = 0 over the time interval
t = 0 to t = 20. The dark blue and orange curves represent the trajectories of
particles 1 and 2, respectively.

QIDNNF demonstrates fine performance by combining data-
driven learning with embedded physical principles. The
predicted wave function trajectories align closely with the
ground truth, maintaining both accurate directionality and
magnitude. These results underscore QIDNNF’s advantages
over Neural ODEs and PINNs in accurately modeling wave
function evolution.

The preservation of wave function normalization is fur-
ther analyzed for both Neural ODEs and QIDNNF, as shown
in Figure 7. QIDNNF consistently preserves normalization
throughout the evolution process, even under varying ini-
tial conditions, ensuring that the predictions remain physi-
cally consistent. In contrast, Neural ODEs struggle to pre-
serve normalization, as evidenced by their amplitude evo-
lution curves deviating significantly from the normalization
ground truth across all initial conditions. This issue stems
from the absence of explicit mechanisms to enforce conser-
vation properties during the time-stepping process, resulting
in prediction instability and underscoring a critical area for
potential improvement.

Figures 6 and 7 illustrate the extrapolation capability of
QIDNNF. Although trained on data from the time interval
[0, 4], QIDNNF accurately predicts the wave function over

Figure 7 (Color online) Amplitude evolution of the wave function in a
linear system: (a) and (b) show results for initial phase angles of 0 and π/3,
respectively. QIDNNF consistently preserves wave function normalization,
while Neural ODEs exhibit significant deviations due to their failure to main-
tain normalization.

the extended time interval [0, 20]. Furthermore, with train-
ing based on only two consecutive time steps, QIDNNF can
predict up to 2000 time steps from an initial condition.

Training time is measured for different sample sizes, and
the inference time for 2000 consecutive steps, along with
the prediction accuracy under fixed initial conditions, is
recorded. The results are summarized in Table 1. The predic-
tion error is defined as e =

∑2
i=1

∣∣∣ψP
i − ψG

i

∣∣∣ /∑2
i=1

∣∣∣ψG
i

∣∣∣, where
the superscripts “P” and “G” denote the predicted and ground
truth values, respectively. Identical training protocols are
employed for all methods: each model is trained for 2000
epochs with a batch size of 128, and both training and infer-
ence are performed with a fixed time step size of ∆t = 0.01.

A comparative analysis of the statistical results shows that
QIDNNF incurs higher training costs than the other two
methods for equivalent training sample sizes, due to the in-
clusion of additional physics-informed computations. How-
ever, it achieves significantly lower prediction errors. It can
be reasonably concluded that Neural ODE and PINNs would
require higher learning costs than QIDNNF to achieve com-
parable error levels. This is supported by the results in the
table, which indicate that models trained with 2000 samples
in the baseline methods still fall short of the accuracy that
QIDNNF achieves with only 400 samples.

We note that QIDNNF does require a longer inference
time compared to Neural ODEs and PINNs, as shown in Ta-
ble 1. However, we have observed that QIDNNF tends to be
more robust with respect to the time step size. By increasing
the time step size, it is possible to improve computational ef-
ficiency significantly, without sacrificing the accuracy of the
predictions.

4 Numerical results

We evaluate the versatility and efficiency of QIDNNF across
a wide range of physical problems, including linear and non-
linear systems, low- and high-dimensional frameworks, and
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Table 1 A comparison of the training and prediction performance for different methods with varying training sample sizes

Sample sizes Training time (s) Inference time (s) Error e

Neural ODE

400 44.96 2.67 0.6343

1000 93.68 2.79 0.2064

2000 165.66 3.03 0.0561

PINNs (α = 0.001)

400 46.98 0.01 0.8893

1000 107.12 0.01 0.7265

2000 202.45 0.01 0.3275

QIDNNF
400 78.74 9.11 0.0031

1000 219.11 8.49 3.9186 × 10−4

2000 421.92 9.55 1.1820 × 10−4

both ODEs and PDEs. The results show QIDNNF’s flexi-
bility in handling complex scenarios, such as fluid mechan-
ics, while ensuring physical consistency, computational ef-
ficiency, and high accuracy, positioning them as a potential
tool for modeling dynamic systems.

4.1 Lagrange vortices

We examine a nonlinear Schrödinger system derived from
the Lagrange vortex method (LVM). A detailed explanation
of the governing equations and the mathematical formulation
is provided in Appendix A1. The system consists of eight
vortex particles with initial positions:x = [0, 0, 0.2,−0.2, 0, 0, 0.2,−0.2] ,

y = [1.7, 1.3, 1.5, 1.5,−1.3,−1.7 − 1.5 − 1.5] ,

where each particle is assigned a vortex strength Γi = 1/4
(i = 1, 2, . . . , 8).

In this numerical experiment, the RK4 method with a
small time step is employed as the reference solution. Us-
ing an initial phase of 0, we generate 2000 training samples
with a time step of ∆t = 0.02. The network architecture is
similar to that used in the previous example, consisting of
5000 training epochs. Each epoch is trained with a batch size
of 128, starting with an initial learning rate of 0.1, which is
reduced by a factor of 0.9 every 100 epochs.

Figure 8 illustrates the flow field at different time, visual-
ized using 1000000 passive particles induced by vortex parti-
cles, with orange circles marking their positions. The trained
network predicts 4000 steps with a time step of ∆t = 0.02,
and a backward-tracking algorithm [37] is used to visualize
the flow field. The first, second, and third rows represent
the results for ground truth, QIDNNF, and Neural ODEs,
respectively, while the first, second, and third columns cor-
respond to time t = 10, 40, and 80. The results show that
QIDNNF provides highly accurate long-term predictions,
closely matching the ground truth. Training on data span-
ning the time interval [0, 40], QIDNNF accurately predicts

Figure 8 (Color online) Flow field visualized at different time using
1000000 passive particles induced by vortex particles, with orange circles
marking the positions of the vortex particles. The first, second, and third
rows show the results for ground truth, QIDNNF, and Neural ODEs, respec-
tively. The first, second, and third columns correspond to time t = 10, 40,
and 80.

results over the extended time interval [0, 80], illustrating
its robust extrapolation capability, even for highly nonlinear
problems. In contrast, Neural ODEs exhibit significant er-
rors due to the absence of physical conservation principles
during training, leading to inaccuracies in particle evolution
and errors in the reconstructed flow field.

4.2 Nonlinear wave

Nonlinear wave equations, such as the 1D nonlinear
Schrödinger equation (NLS), govern many significant phys-
ical phenomena, including Bose-Einstein condensates and
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plasma waves [15]. As detailed in Appendix A2, we con-
sider an initial condition characterized by a hyperbolic se-
cant distribution over the domain x ∈ [−5, 5], specifically
ψ0 = 2 sech(x), with periodic boundary conditions ψ(−5, t) =
ψ(5, t) and ψx(−5, t) = ψx(5, t).

Using the methodology outlined in ref. [15], the spatial
domain is discretized into 256 mesh points, and 200 training
datasets of normalized wave functions are generated over the
time interval t ∈ [0,π/2] with a time step of ∆t = π/400.
A Unet model [38] with 1D convolutional neural networks is
employed for training, as described in Table 2. Training is
performed using the Adam optimizer with an initial learning
rate of 0.001, which is reduced by 10% every 10 epochs, and
a batch size of 8.

QIDNNF is applied to predict the wave function evolution
over the extended time interval t ∈ [0,π], thereby validating
their extrapolation capability in solving PDEs. The results
of continuous predictions over 400 time steps are presented
in Figure 9. The top part of the figure compares the spatial
distribution of |ψ| predicted by QIDNNF with the ground
truth at three specific time points, arranged from left to right.
This comparison highlights the models accuracy in captur-
ing the dynamics of the wave function. The bottom part
illustrates the long-term prediction of the spatial distribution
of |ψ|, demonstrating the stability and robustness of QIDNNF

Table 2 Unet structure information

1D Unet 2D Unet 3D Unet

Input 2×256 4×128×128 4×64×32×32

Encoder layer 1 64 64 64

Encoder layer 2 128 128 128

Encoder layer 3 256 256 256

Encoder layer 4 512 512 512

Decoder layer 1 256 256 256

Decoder layer 2 128 128 128

Decoder layer 3 64 64 64

Output later 2×256 4×128×128 4×64×32×32

Periodic extension 2×512 4×380×380 4×74×62×62

Kernal size 5×1 5×5 3×5×5

in modeling extended temporal behavior.

4.3 Incompressible Schrödinger flow

The incompressible Schrödinger flow (ISF) problem as de-
tailed in Appendix A3 is reformulated to integrate seamlessly
with the QIDNNF, enabling efficient and physically consis-
tent solutions for vortical flows. The framework is further
extended to 2D and 3D scenarios using tailored Unet archi-
tectures, with their layer configurations and parameters de-
tailed in Table 2. These models provide accurate, scalable
solutions for complex vortical flow dynamics.

Figure 9 (Color online) Visualization of wave function evolution: the long-term spatial distribution of |ψ| predicted by QIDNNF is shown below, with
comparisons to the ground truth at three specific time points displayed above, arranged sequentially from left to right.
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2D flow The evolution of a 2D flow generated by four con-
centrated vortex centers is studied as a benchmark case. The
initial wave functions for the ISF are initialized using al-
gorithm 2, which computes the wave functions ψ0

1 and ψ0
2

over the spatial domain (x, y) ∈ [0, 2π]2. This process in-
volves calculating radial distances, applying exponential de-
cay functions, and performing normalization and projection
operations to ensure compatibility with the ISF governing
equations.

Algorithm 2 Initialization of 2D flow

Input: (x, y) ∈ [0, 2π]2;
Output: ψ0

1, ψ0
2;

1: rx,1 =
4
π

(x − π) ; ry,1 =
4
π

(y − 1.4π) ; r2
1 = r2

x,1 + r2
y,1;

2: rx,2 = − 4
π

(x − π) ; ry,2 = − 4
π

(y − 0.6π) ; r2
2 = r2

x,2 + r2
y,2;

3: d1 = exp
{
−
(
r2

1/9
)4 }

; d2 = exp
{
−
(
r2

2/9
)4 }

;

4: ψ∗1 =
2rx,1d1+i(1+r2

1−2d1)
1+r2

1
· 2rx,2d2+i(1+r2

2−2d2)
1+r2

2
;ψ∗2 = 0.01;

5:
(
ψ0

1, ψ
0
2

)
= Normalization

(
ψ∗1, ψ

∗
2

)
◃ Algorithm a1

6:
(
ψ0

1, ψ
0
2

)
= Projection

(
ψ0

1, ψ
0
2

)
◃ Algorithm a1

Training data are generated using the ISF solver as the
ground truth, with a time step of ∆t = 0.002 and a mesh reso-
lution of 128×128. A total of 1000 datasets are employed for
training, with the Adam optimizer used to minimize the loss
function. The training process begins with an initial learn-
ing rate of 0.001, which decays by a factor of 0.9 every 20
epochs, over a total of 1000 epochs to ensure convergence.

The QIDNNF is utilized to predict the evolution of the
flow field over 200 time steps. Figure 10 compares the
predicted flow fields with the ground truth at selected time
points. The background illustrates the vorticity in the z-
direction through white-to-blue contours, while the velocity
field is represented by arrows, with color indicating the mag-
nitude of velocity, ranging from white to orange. The re-
sults validate the precise and stable simulation capabilities of
QIDNNF for 2D fluid problems, particularly highlighting its
ability for long-term continuous extrapolation.

3D smoke The application of deep learning to 3D PDEs re-
mains an evolving research area. In this work, we extend the
QIDNNF to tackle 3D problems, specifically focusing on a
smoke simulation scenario. The setup and data used in this
study are adapted from the work of Chern et al. [39].

For this simulation, we use the solutions from the ISF
solver as the ground truth, with a time step of ∆t = 1/24
and a mesh resolution of 64 × 32 × 32. The dataset consists
of 500 pairs of sequential time steps, which are employed
for training. The model is trained using the Adam optimizer
with an initial learning rate of 0.001, decayed by 10% every
10 epochs, and the training process spans 1000 epochs.

Once trained, the model is used to predict the evolution
of the flow field over 200 time steps, with the results visual-
ized using 20000000 passive particles. Figure 11 illustrates
the dynamic interaction of two vortex rings, where each al-
ternately passes through the other in a periodic motion. This

Figure 10 (Color online) Visualization of the 2D flow field. The background shows the vorticity in the z-direction, represented by white-to-blue contours,
while the velocity field is depicted by arrows colored according to the velocity magnitude, with white-to-orange coloring. The first and second rows show the
results for ground truth and QIDNNF, respectively. The four columns correspond to time t = 0.8, 1.6, 2.4, and 4.0.
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Figure 11 (Color online) Visualization of 3D leapfrogging smoke at different time steps, rendered with 20000000 passive particles. The results illustrate that
QIDNNF accurately captures the leapfrogging phenomenon induced by the alternating motion of two vortex rings, with predictions closely aligned with the
ground truth. The first and second rows show the results for ground truth and QIDNNF, respectively. The first, second, and third columns correspond to time
steps N = 100, 200, and 300.

leapfrogging behavior arises from the velocity fields gener-
ated by the rings: as one advances, it induces a flow that
propels the trailing ring forward, allowing it to pass through
the leader. The roles then reverse, creating a visually recur-
ring phenomenon. The predictions, generated by QIDNNF,
closely align with the ground truth, accurately capturing the
dynamic behavior of the flow.

5 Conclusion

This study presents QIDNNF, a novel deep learning frame-
work that integrates quantum principles, including phase in-
variance and normalization, to solve Schrödinger’s equation
and its Schrödingerization-derived forms. Building on Neu-
ral ODEs, QIDNNF enhances its functionality with phase in-
tegral and normalization operations, enabling efficient solu-
tions for a wide range of PDEs.

Through numerical experiments, QIDNNF demonstrates
improvements over existing deep learning methods, offer-
ing higher accuracy, greater stability, and faster conver-
gence. These advantages are further validated across sev-
eral test cases, including vortex dynamics, nonlinear wave
propagation, and incompressible Schrödinger flow, show-
ing QIDNNF’s effectiveness in simulating complex physical
phenomena while maintaining physical consistency. In ad-
dition, QIDNNF shows promising potential in extrapolation
capability. It is able to predict results over longer time inter-
vals based on training data from shorter time spans and can

provide accurate predictions over multiple consecutive time
steps, even when trained on just two sequential time steps.

While the results are promising, further research is needed
to explore QIDNNF’s applicability to a wider range of sys-
tems. One key avenue for future work is the integration
of QIDNNF with quantum computing architectures, which
could further improve its efficiency, accuracy, and robustness,
allowing it to tackle increasingly complex physical problems.
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Appendix

A1 Lagrangian vortex method

The NS equation represented by vorticity ω = ∇ × u is

Dω
Dt
= (ω · ∇) u + ν∇2ω + ∇ × f , (a1)

where u is the veolocity, ν indicates the kinematic viscosity,
and f represents the body force. Eq. (a1) discretized by the
LVM into the ODEs representing the nd-dimensional position
evolution of Np vorticity particles [40]:

dΓi

dt
= γi,

dxi

dt
=

1
2π(nd − 1)

Np∑
j=1, j,i

Γi ×
(
xi − x j

)∣∣∣xi − x j

∣∣∣nd
+ vi,

(a2)

where xi ∈ Rnd denotes the spatial position of the vortex par-
ticle i (i = 1, 2, · · · ,Np). Γi is the circulation integral of ω
for the i-th computing element, indicating the strength of the
vortex particle. γi and vi are strength change rate and drift
velocity, respectively, neither of which are considered in an
ideal 2D flow. We use a complex variable ϕi = xi + iyi to
describe the 2D vortex particle position, so that eq. (a2) can
be rewritten as

dϕi

dt
=

1
2π

Np∑
j=1, j,i

Γi ×
(
ϕi − ϕ j

)
∣∣∣ϕi − ϕ j

∣∣∣2 . (a3)

Eq. (a3) has been preliminarily displayed in the form of
Schrödinger, and it is not difficult to find that it has the global
phase invariance property described in Property 1. Specifi-
cally, if all phases ϕi are shifted by the same constant phase
α, i.e., ϕi → ϕi + α, the equation remains valid. To obtain
the standard Schrödinger equation form, we simply need to
normalize ϕi.

A2 Nonlinear Schrödinger equation

The wave function of the 1D NLS satisfies the governing
equation:i
∂ψ

∂t
+

1
2
∂2ψ

∂x2 + |ψ|
2 ψ = 0,

x ∈ [x0, x1] , t ∈ [t0, t1] ,
(a4)

along with the initial condition ψ (x, t = t0) = ψ0 (x), and
boundary conditions B (x0, x1, t) = 0.
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A3 Incompressible Schrödinger flow

Chern et al. [39] utilize a dual-wave function approach
ψ =

[
ψ1, ψ2

]
to reformulate an incompressible fluid sys-

tem, known as the ISF, where the flow field’s velocity v =
(v1, v2, v3)T and dimensionless density ρ are reexpressed as

vi = ~

⟨
∂ψ

∂xi
, iψ
⟩
R

, i = 1, 2, 3, ρ = ∥ψ∥ , (a5)

where ⟨α,β⟩R = Re (⟨α,β⟩C) = Re(α1β1 +α2β2). Employing
mapping eq. (a5), the incompressible fluid equations can be
transformed into a Schrödinger equation:

i~
∂ψ

∂t
= −~

2

2
∆ψ + pψ, (a6)

where p indicates pressure potential. The incompressibility
condition ∇·v = 0 is enforced through the constraint imposed
by the wave function, ⟨∆ψ, iψ⟩R = 0. The ISF equations are
typically solved using a projection method, as concisely out-
lined in algorithm a1.

Algorithm a1 ISF solver
Input: ψn−1, ~, ∆t;
Output: ψn, vn;
1: ψ∗ ← ψn−1 + ∆t · i ~2∆ψn−1; ◃ Wave function predictor (FFT)

2: v∗i ←
⟨
∂ψ∗
∂xi

, iψ∗
⟩
R

; ◃ Velocity predictor
3: ψ∗ ← ψ∗/ ∥ψ∗∥ ; ◃ Normalization

4: ∆ϕ← ∇ · v∗; ψn ← ei ϕ~ ψ∗; ◃ Pressure projection
5: vn ←

⟨
∂ψn

∂xi
, iψn
⟩
R
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