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Vortex interactions are commonly observed in atmospheric turbulence, plasma dynamics, and col-10

lective behaviors in biological systems. However, accurately simulating these complex interactions is11

highly challenging due to the need to capture fine-scale details over extended timescales, which places12

computational burdens on traditional methods. In this study, we introduce a quantum vortex method,13

reformulating the Navier–Stokes (NS) equations within a quantum mechanical framework to enable the14

simulation of multi-vortex interactions on a quantum computer. We construct the effective Hamiltonian15

for the vortex system and implement a spatiotemporal evolution circuit to simulate its dynamics over16

prolonged periods. By leveraging eight qubits on a superconducting quantum processor with gate fideli-17

ties of 99.97% for single-qubit gates and 99.76% for two-qubit gates, we successfully reproduce natural18

vortex interactions. Overall, we establish a framework that reformulates vortex dynamics into a nor-19

malized wavefunction representation compatible with quantum system unitary evolution, combined with20

the designed spatiotemporal encoding scheme, providing a concrete pathway toward leveraging quantum21

resources in fluid systems.22

INTRODUCTION23

Vortices in fluids constitute a core component of complex24

flow behaviors, encompassing phenomena such as tropical cy-25

clones [1–3], ocean currents [4–6], microfluidics [7, 8], as26

well as plasmas and magnetofluids [9–13]. Vortex interac-27

tions, which involve complex behaviors like vortex pairing28

and the leapfrogging effect (as shown in Fig. 1a and Fig. 1b),29

affect energy transport, momentum exchange, and the scale30

cascade process in fluids, ultimately determining turbulence31

characteristics and its evolution [14–17]. However, simulat-32

ing these critical and intricate structures using classical com-33

putation is highly challenging, as achieving the necessary34

spatial and temporal resolution to capture fine-scale details35

over extended timescales demands massive computational re-36

sources [18–21], often exceeding practical limits. This com-37

plexity has spurred the development of advanced methods to38

address the computational bottlenecks while maintaining ac-39

curacy.40

Recent progress in quantum computing presents a promis-41

ing avenue to address these challenges, as emerging research42

on universal quantum partial differential equation (PDE) /43

ordinary differential equation (ODE) solvers[22–29] demon-44

strates potential for application in computational fluid dy-45

namics (CFD) by leveraging quantum algorithms to replace46

key components of traditional solvers based on the fluid gov-47

erning equations[30–37]. Additionally, alternative fluid dy-48

namics descriptions optimized for quantum computing have49

been proposed, including quantum algorithms inspired by50

the lattice Boltzmann method [38–42], quantum simulations51

based on Schrödingerization [43–45], and the hydrodynamic52

Schrödinger equation [46–48], which is inherently more suit-53

able for quantum computing than the conventional Navier–54

Stokes (NS) equations [49].55

Although quantum computing has demonstrated its poten-56

tial in fluid mechanics, simulating fluid motion on actual57

quantum devices based on existing algorithms remains chal-58

lenging. Current research into complex phenomena like vor-59

tex interactions remains partially constrained by the reliance60

on Eulerian methods, whose high spatial resolution require-61

ments for accurate fluid behavior capture consequently in-62

crease quantum resource demands as qubit needs scale with63

grid resolution, making such implementations challenging64

on present noisy intermediate-scale quantum (NISQ) hard-65

ware [50]. We adopt Lagrangian vortex methods (LVM) that66

circumvent the limitations of Eulerian formulations, which are67

commonly used in the CFD community [51]. Furthermore,68

their intrinsic conservation laws governing vorticity evolution69

in high-Reynolds-number flows exhibit inherent compatibility70

with unitary quantum evolution [52, 53], thereby establishing71

a promising pathway for developing quantum simulations that72

preserve the conservation laws of fluid systems.73

Moreover, many quantum algorithms for simulating the74

time evolution of a system typically require a measurement75

at every time step to extract information necessary for study-76

ing dynamical behavior, computing physical quantities, and77

optimizing algorithms. However, since measurements col-78

lapse the quantum state, the quantum state at intermediate79

steps must be re-prepared to continue the computation. We80

design a novel spatiotemporal encoding scheme that embeds81

both spatial and temporal information directly into the quan-82

tum state. This approach prepares, in a single quantum-circuit83

structure, a quantum state that encodes information at multi-84

ple time steps in superposition, thereby eliminating the need85

for stepwise state preparation. We note that the measurement86

of a state for a specific time step requires repeated executions87

of the quantum circuit to collect samples, with the number88
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of realizations for a given accuracy increasing with temporal89

qubits.90

In this work, we propose the quantum vortex method91

(QVM), which directly focuses on vortices themselves instead92

of relying on spatial discretization grids as in the Eulerian93

methods, thereby enabling the reformulation of complex vor-94

tex interactions in fluids within the framework of quantum95

computing. The QVM transforms the evolution of the vortex96

particle system into the evolution of a wavefunction. We adopt97

a data-driven strategy to train evolution modules that capture98

the dynamics of the wavefunction. Leveraging the trained99

modules, we then design an efficient spatiotemporal evolu-100

tion circuit to implement the wavefunction propagation, where101

spatial qubits encode the spatial information of the vortex par-102

ticle system, while auxiliary temporal qubits, initialized into103

a superposition state via Hadamard gates, act as placeholders104

for all time steps and later serve as control qubits to guide the105

evolution module in the spatial circuit. Building upon these106

theoretical developments, we implement the QVM on super-107

conducting quantum processors to efficiently compute vortex108

interaction dynamics. This approach bridges classical fluid109

dynamics and quantum simulations, providing a new platform110

for exploring both quantum and classical vortex phenomena111

and offering a powerful tool for reinterpreting classical vortex112

dynamics from a quantum perspective.113

RESULTS114

Quantum vortex method115

The fluid dynamics are governed by the NS equations for the116

velocity field u(x, t), which describe the evolution of the flow117

under the influence of pressure p, viscosity ν, and external118

forces f :119




Du

D t
= −1

ρ
∇p+ ν∇2u+ f ,

∇ · u = 0,

(1)

where D /D t = ∂/∂t + u · ∇ is the material derivative, and120

ρ is the constant fluid density.121

To adapt the NS equations for quantum computing, we uti-122

lize the relationship between the vorticity field ω and the ve-123

locity field u (ω = ∇ × u), discretize the vorticity field into124

Np point vortices, and map their coordinates to complex vari-125

ables, leading to the generalized Schrödinger equation:126

dψj(t)

d t
= i Hj

�
ψ1(t), . . . , ψNp

(t)

, j = 1, . . . , Np. (2)

Here Hj denotes the j-th component of a vortex-interaction-127

dependent Hamiltonian.128

The wave function ψj is transformed from the j-th vortex129

particle position ϕj with130

ψj = λ


ϕj −

 t

0

c(τ) d τ + C0


, (3)

where C0 is an arbitrary constant, j indexes the vortex parti-131

cles, and λ is a scaling factor that ensures the normalization132

condition:
Np

j=1 |ψj |2 = 1 at t = 0. The time-dependent133

function c(t) is defined as:134

c(t) = iλ
1

4π

Np
j ̸=k,j=1,k=1

Γk

ψjψ
∗
k − ψkψ

∗
j

|ψj − ψk|2
Np

i ψ∗
i

 , (4)

where (·)∗ denotes complex conjugation, and Γk denotes the135

vortex strength of the k-th vortex.136

The evolution of the quantum vortex system is governed by137

equations that ensure the normalization of the quantum state,138

facilitating accurate simulations of fluid flows with reduced139

computational costs. Furthermore, we observe that when the140

vortex particle system exhibits collective motion in a certain141

direction, c(t) tends to remain relatively stable, exhibiting142

only minor fluctuations around a constant value. Therefore,143

we also provide a random sampling approximation method,144

in which we randomly select a subset of time instances of c(t)145

and average them to approximate their complete set.146

We remark that the normalization mapping the evolution147

of the vortex particle system to the evolution of a wavefunc-148

tion is mathematically equivalent to the conventional vortex149

method. To enable experiments on present hardware, approx-150

imations and linearization are introduced to preserve leading-151

order vortex interactions in a linear representation. A detailed152

description of the QVM is in SUPPLEMENTARY NOTE 1.153

Quantum encoding and evolution154

The fluid dynamics are governed by Eq. (1), with vortex parti-155

cle positions represented by ϕ, which can be transformed into156

wave function ψ through Eq. (3), and ψ evolves according to157

Eq. (2). One may solve Eq. (1) on a grid, extract ϕ, and apply158

the transformation to obtain ψ, thus creating the data needed159

for training the nonlinear model described by Eq. (2).160

We investigate a system governed by Eq. (2) with Np vor-161

tices, discretizing time evolution into evenly spaced Nt in-162

tervals. For the j-th vortex particle, its position in config-163

uration space is mapped to a complex variable ϕj , with j164

ranging from 1 to Np. Subsequently, we introduce a trans-165

formation that shifts and scales the complex coordinates ϕj166

to define new variables ψj . This transformation ensures that167

each component ψj of the wave function is properly normal-168

ized in terms of probability and remains conserved during the169

evolution governed by QVM. In the case of time discretiza-170

tion, the value of ψj at the i-th time step is denoted by ψi
j .171

At each time step, the collection of ψi
j forms a state vector172

|ψi⟩ =

ψi
1, ψ

i
2, . . . , ψ

i
Np

T
.173

To achieve efficient evolution, the initial flow field state174

|ψ0⟩ is first encoded into a larger quantum system. Specif-175

ically, the system’s initial state is prepared as a tensor prod-176

uct of the flow field’s initial state, which is encoded in177

np = ⌈log2 Np⌉ qubits, and a uniform superposition state178

encoded in nt = ⌈log2 Nt⌉ qubits. This procedure effec-179

tively generates multiple replicas of the flow field’s initial180

state, as shown in Fig. 1d. These replicas explore different181



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

3

temporal evolutions simultaneously, and evolve in a branch-182

ing manner as depicted in Fig. 1f, eventually yielding a su-183

perposition of flow field states at 2nt time steps |ψ⟩ =184

1√
Nt

[
|ψ0⟩, |ψ1⟩, . . . , |ψNt−1⟩

]T
, as shown in Fig. 1e.185

The evolution process is implemented with the quantum cir-186

cuit illustrated in Fig. 2. The core element of this circuit is187

the evolution unitary Fk, with k ranging from 1 to nt, which188

evolves the state from i-th time step to (i+2k−1)-th time step189

as |ψi+2k−1⟩ = Fk |ψi⟩. At the beginning of the evolution, all190

qubits are initialized in the state |0⟩. The system then under-191

goes spatiotemporal evolution through a layered quantum cir-192

cuit architecture, evolving the quantum state into |ψ⟩. Specifi-193

cally, the spatial qubits are initialized to the desired initial state194

through the “State Prep.” module, while the temporal qubits195

are prepared into a uniform superposition state via Hadamard196

gates. The temporal qubits then act as control qubits, which197

sequentially control the implementation of evolution unitaries198

F1,F2, . . . ,Fk on the spatial qubits.199

With this controlled-unitary scheme, the quantum state un-200

dergoes a tree-like branching evolution from the initial state201

shown in Fig. 1f, ultimately resulting in a superposition of all202

system states across 2nt time steps. This design fully lever-203

ages the parallelism of quantum computing, significantly im-204

proving the efficiency of the simulation. See SUPPLEMEN-205

TARY NOTE 2 for more details.206

Experimental setup207

The algorithm is implemented with eight frequency-tunable208

transmon qubits on a flip-chip superconducting quantum pro-209

cessor, as shown in Fig. 1c, where blue circles represent the210

spatial qubits and green circles represent the temporal qubits.211

Each qubit can be controlled and readout individually. The212

nearest-neighbouring qubits are connected with a tunable cou-213

pler for tuning on and off the effective coupling strength of the214

two qubits. The single qubit gate with a length of 24 ns is re-215

alized by applying a Gaussian-shaped microwave pulse with216

DRAG correction [54]. The two-qubit CZ gate, with a dura-217

tion of around 40 ns, is realized by tuning the frequencies and218

coupling strength of the two qubits to achieve a close-cycle219

diabatic transition, a global process involving both qubits as a220

combined system, between |11⟩ (both qubits in their excited221

states) and |02⟩ (the first qubit in the ground state and the sec-222

ond qubit in its second excited state), accumulating a π phase223

shift that transforms |11⟩ into − |11⟩. The median parallel224

single-qubit gate and two-qubit gate fidelities are 99.97% and225

99.76% respectively. See SUPPLEMENTARY NOTE 6 for226

details.227

Nonlinear interactions in vortex systems228

The leapfrog vortex phenomenon [55], described by the NS229

equation, refers to a mode of motion that occurs when two or230

more vortex rings interact, corresponding to four or more vor-231

tex particles in two dimensions. We consider the evolution of232

a four-vortex-particle system under Eq. (2), with the positions233

of the four particles initialized to be (0, 1), (0, 0.3), (0,−1),234

and (0,−0.3), respectively. We then apply the transforma-235

tion defined in Eq. (3), with C0 = −1.7903 and Γ =236

(1, 1,−1,−1) to obtain the corresponding quantum state. To237

learn the Hamiltonian of the vortex system, we select 100 vor-238

tex state pairs at time (ti, ti+1) to form the training set. Here,239

ti = 0.18(i− 1) with i = 1, . . . , 100 is equally sampled from240

a time range of [0, 18], which roughly corresponds to the pe-241

riod of a full leapfrogging cycle.242

In our experiment, we use two qubits to encode spatial in-243

formation of the four vortex particles. Additionally, six qubits244

are used to represent 64 time steps in the evolution. We then245

apply the QVM circuit based on the learned Hamiltonian to246

prepare the quantum state that encodes the spatiotemporal dy-247

namics of the entire evolution process. To obtain the evolution248

trajectories of the vortex particles, we perform quantum state249

tomography (QST) on the two spatial qubits, while simulta-250

neously conducting projective measurements on all temporal251

qubits. For each time step, we postselect the QST data for252

the respective temporal state to reconstruct the density ma-253

trix, from which the positions of the vortex particles can be254

extracted (see Methods). Note that additional global phases,255

which are experimentally unobservable, are numerically ap-256

plied at each time step to preserve the symmetry of the system257

and constrain particle motion along the positive real axis.258

For comparison, we conduct ideal (noiseless) and noisy259

simulations using the same circuit as in the experiments. In260

the noisy simulation, we consider error models including de-261

polarizing error of the single- and two-qubit gates, the qubit262

decoherence, and readout error, with the error rates obtained263

from experiments (see SUPPLEMENTARY NOTE 6). In264

Fig. 3a, we plot the experimentally extracted trajectory of the265

four vortex particles for time steps outside of the training set,266

i.e., after t = 18. The results demonstrate a decent agreement267

between experimental data and noisy simulation. To charac-268

terize the experimental performance, we compare the recon-269

structed state of the spatial qubits and positions of the vortex270

particles with those obtained from noiseless numerical simu-271

lation (Fig. 3b). The state fidelity values exceed 97% for all272

time steps (Fig. 3b, upper panel). Besides, the position devia-273

tions of all four vortex particles from the noiseless simulated274

values remain below 0.2 throughout the evolution (Fig. 3b,275

lower panel). Moreover, using the vortex particle position data276

from both experimental and noiseless simulation results, we277

reconstruct the velocity field for each time step based on the278

Biot-Savart formula and visualize it in Fig. 3c and Fig. 3d,279

respectively. For all illustrated time steps, the velocity fields280

from experimental data are in close agreement with those of281

the noiseless simulation, demonstrating that two vortex rings,282

corresponding to four point vortices in 2D, alternately pass283

through and move forward in a real flow field while maintain-284

ing a degree of symmetry. An additional leapfrogging-type285

example in SUPPLEMENTARY NOTE 5 empirically probes286

how the learned evolution module Fk responds to small per-287

turbations of the initial condition, where we observe indica-288

tions of generalization beyond the training trajectory.289
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Turbulent vortex particle system290

To demonstrate the robustness of our method, we further im-291

plement it to simulate the dynamics of an eight-vortex-particle292

system. The positions and vortex strengths of the eight vortex293

particles are initialized randomly, akin to a turbulent vortex294

particle system. We numerically perform the simulation us-295

ing MindQuantum [56], an open-source quantum computing296

framework for simulating and implementing quantum algo-297

rithms. We use three spatial qubits and nine temporal qubits to298

encode the positions and time steps, and then simulate the dy-299

namics of the system under Eq. (2). Specifically, we select 64300

equally spaced time steps, namely, Nt ∈ {0, 4, 8, . . . , 252},301

within the time range [0, 256] as training data to directly learn302

the implementation circuit using the variational quantum algo-303

rithm (VQA) described in the Methods. Applying the learned304

circuit to the first frame, we construct the wavefunctions for305

all time steps from 0 to 511. Fig. 4(a–d) visualizes the re-306

sults at time steps 128 and 384, respectively. The progression307

from (a) to (c) illustrates how vortex dynamics evolve while308

maintaining coherent structures, whereas the corresponding309

velocity distributions from (b) to (d) quantitatively capturing310

the spatial variations in flow velocity magnitude and direction.311

Viscous vortex particle systems312

We now turn to a viscous system containing two vortex parti-313

cles. For viscous vortex particle systems, our data-driven ap-314

proach enables viscosity terms to be encoded within normal-315

ized quantum state vectors that preserve their physical prop-316

erties during evolution. Vortex particle strengths are implic-317

itly incorporated within the evolution module during training318

and rollout, and the velocity field can be recovered by ap-319

plying empirical relations for the time evolution of strength.320

A detailed description can be found in SUPPLEMENTARY321

NOTE 1. In this simple two-vortex system, both particle posi-322

tions and viscous interactions can be represented through nor-323

malized wavefunctions, enabling our QVM to compute vis-324

cous evolution directly from the learned circuit using VQA325

on MindQuantum. In contrast, the classical Lagrangian vor-326

tex method method faces limitations in directly incorporating327

viscosity terms into the vortex particle evolution.328

We employ high-precision grid-based Eulerian methods for329

solving the NS equation to compute the two-dimensional flow330

field and extract vortex particle positions as the dataset. The331

spatial information is encoded using np = 1 qubits, while nt332

= 4 qubits are allocated for encoding the temporal steps, with333

the first four frames used to optimize the variational circuit334

parameters. A comparison of the computational results be-335

tween the QVM and LVM in Fig. 4e and Fig. 4f reveals336

that the former exhibits perfect agreement with ground truth337

data, whereas the latter demonstrates significant positional de-338

viations indicative of strong viscous dissipation effects. Al-339

though 16 frames, corresponding to 4 qubits, are actually340

computed, only frames 0, 2, . . . , 14 are visualized due to space341

limitations.342

We remark that our method extends the idealized frame-343

work by learning viscous diffusion from data; the example of344

two co-rotating vortices in Fig. 4 shows vortex pre-merging345

dynamics. Although we implicitly handle vortex particle346

strengths, how to address topological changes induced by vis-347

cosity [57], such as vortex splitting, merging, or reconnection,348

has not yet been investigated due to the fixed structure of the349

quantum representation. In conventional vortex methods, var-350

ious particle reseeding and local re-meshing techniques, in-351

cluding vortex element splitting, merging, and deletion, have352

been developed to handle vortex reconnection [58, 59]. From353

an implementation perspective, we could initialize partially354

empty vortex element data structures to accommodate varia-355

tions in vortex element count, suggesting that incorporating356

auxiliary registers might provide a potential solution for han-357

dling vortex reconnection in future work. We provide a more358

detailed discussion in SUPPLEMENTARY NOTE 1.359

DISCUSSION360

This study introduces a quantum algorithmic framework de-361

signed to simulate intricate vortex interactions in fluid dynam-362

ics. By directly encoding vortex information into quantum363

states, the approach circumvents the inherent challenges asso-364

ciated with quantum encoding of fluid fields. The proposed365

algorithm is validated through numerical simulations of tur-366

bulent and viscous flows, as well as experimental simulation367

of the leapfrogging vortex phenomenon on a superconduct-368

ing quantum processor. The present QVM is most effective369

when the flow admits a compact Lagrangian description with370

a small number of coherent vortices. In such cases, the qubit371

count scales with the number of vortices rather than a spa-372

tial grid; time-parallel encoding reduces repeated state prepa-373

rations; and measured observables can be tailored to vortex-374

level quantities. By contrast, when smooth potential fields375

are of primary interest or full-field observables are essential,376

Schrödinger/Madelung-based formulations provide a natural377

Eulerian pathway and remain preferable. We therefore view378

the two families of approaches as complementary, and we out-379

line extending our framework with data-driven reduced oper-380

ators and improved measurement strategies as a path toward381

bridging more complex scenarios. We provide a detailed dis-382

cussion in SUPPLEMENTARY NOTE 1.383

The theoretical benefit in circuit evolution primarily de-384

pends on the complexity of the evolution module Fk and385

its count O(logNt), where Nt denotes the number of dis-386

crete time steps. For different temporal qubit indices k, the387

complexity of Fk shows no significant difference; as such,388

we characterize each module as O(ḡCZ). We conclude that389

the overall complexity of the quantum circuit execution is390

O(ḡCZ logNt), demonstrating a quantum benefit for predict-391

ing long-time flow evolution as the algorithmic complexity392

grows logarithmically with Nt. We provide a detailed discus-393

sion in SUPPLEMENTARY NOTE 4.394

Our spatiotemporal encoding approach leverages both spa-395

tial and temporal degrees of freedom to expand the Hilbert396

space available for information storage, enabling an expo-397
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nential increase in capacity compared to classical systems398

of similar scale. Specifically, our method processes all time399

steps in a quantum superposition within a single workflow, re-400

quiring logNp + logNt qubits compared with the classical401

NpNt units of storage for the same functionality. For sequen-402

tial time-stepping dynamics, classical methods require stor-403

age scaling linearly with system size Np, while our quantum404

approach exploits superposition and entanglement to encode405

spatial information efficiently. Despite logarithmic overhead406

from the time register, the quantum method still maintains a407

benefit as problem size increases. This high-density encoding408

scheme is particularly well-suited for storing dynamic or high-409

dimensional data such as neural network parameters or phys-410

ical trajectories. It also aligns naturally with quantum mem-411

ory architectures, allowing efficient data retrieval via quan-412

tum algorithms including Grover’s search and quantum ran-413

dom access memory [60]. Applications span a wide range414

of fields, including artificial intelligence [61], where data and415

models can be encoded and processed in parallel, scientific416

simulations involving complex many-body or time-evolving417

systems, and quantum cryptography [62], where secure and418

scalable storage of large keys or quantum states is essential.419

Phenomena governed by viscosity and small scale physics,420

such as splitting, co-rotating merging, are not yet fully mod-421

eled. A complete quantum vortex particle solver for the in-422

compressible NS equations remains a subject for further study.423

Future advances in measurement techniques and error mitiga-424

tion strategies, such as quantum error correction [63], noise425

filtering, and more efficient tomography [64], along with the426

development of novel quantum algorithms that reduce the427

need for intensive measurements, could further alleviate the428

computational burden and enhance the efficiency of quantum429

simulations.430

METHODS431

Implementing the evolution modules432

To implement the quantum circuit module, we leverage a data-433

driven approach. We approximate the Np-particle system as434

a linear system described by a parameterized effective Hamil-435

tonian Heff(θ), expressed as an Np ×Np complex Hermitian436

matrix. The training time range Ttrain is uniformly divided437

into Ntrain (Ntrain ≥ N2
p ) segments, based on which we extract438

Ntrain state pairs separated by a step size ∆ttrain as our training439

data. While ∆ttrain typically matches the evolution step size,440

it can be adjusted for specific purposes such as data interpola-441

tion.442

For the training process, we construct a temporary unitary443

evolution operator U(θ; ∆ttrain) = e− iHeff(θ)∆ttrain based on444

the chosen step size ∆ttrain. We optimize the parameterized445

unitary matrix to match the evolution for all state pairs in446

the training set, thereby obtaining a linear dynamics. The447

evolution matrices Fk are then constructed similarly through448

e− i Heff(θ)2
k−1∆tpredict , where the time step ∆tpredict can be the-449

oretically arbitrary. With the determined evolution matrices450

Fk, the CPFlow method [65] is then employed to obtain the451

quantum circuit implementation with the optimal fidelity and452

number of CZ gates corresponding to Fk. The complexity of453

the operator Fk is heuristic and scales empirically with the454

system size, as in the quantum approximate optimization al-455

gorithm (QAOA) [66, 67]. Further details on the practical im-456

plementation and complexity of Fk are provided in SUPPLE-457

MENTARY NOTE 3.458

In addition to introducing a Hamiltonian as an intermediary459

to accommodate hardware limitations, the evolution module460

can alternatively be implemented by designing a parameter-461

ized quantum circuit ansatz and employing VQA to minimize462

the loss function, thereby learning vortex dynamics directly463

from data. We theoretically derive the complete quantum cir-464

cuit for loss evaluation and gradient computation methods in465

SUPPLEMENTARY NOTE 3.466

To validate the generalization and practical implementabil-467

ity of our QVM, we evaluate the transfer performance of468

its evolution module Fk to nearby initial conditions against469

a configuration-space dynamic mode decomposition (DMD)470

surrogate trained on identical data. Results demonstrate that471

the solution error of our method remains stable across varying472

initial conditions, indicating that the trained operators can be473

effectively reused for systems with the same vortex count and474

similar configurations. Both methods show comparable per-475

formance within the training horizon under small deviations,476

while QVM exhibits slower error growth and tighter uncer-477

tainty bands under larger perturbations. We hypothesize that478

the normalization and unitary propagation act as an implicit479

regularizer under distribution shift, improving robustness at480

the cost of a small in-distribution bias. Future work could481

explore a hybrid approach combining DMD’s interpretability482

with QVM’s hardware-native generalization for enhanced per-483

formance and adaptability. A detailed configuration and rep-484

resentation is provided in SUPPLEMENTARY NOTE 5.485

Extracting the spatial information486

In our experiment, we use QST to obtain the density matrix of487

the spatial qubits. We then extract the spatial information of488

the vortex particles from the eigenstate of the density matrix489

with the maximum eigenvalue. The method is valid for the490

depolarization error with a sufficiently small error rate p. Un-491

der the depolarizing error channel, the experimental density492

matrix can be modeled as ρexp → (1− p)ρ+ (p/2N )I , where493

ρ = |ψ⟩⟨ψ| is the ideal density matrix and N is the number494

of qubits. Thus, |ψ⟩ is also the eigenstate of the experimental495

density matrix with an eigenvalue of 1 − p + p/2N , which496

remains the largest among all eigenvalues for a small p. How-497

ever, in our experiment, there are also coherent error channels,498

which can change the eigenstates of ρexp, introducing addi-499

tional errors during the spatial information extraction proce-500

dure. To mitigate this error, we apply Pauli Twirling [68],501

which can effectively transform all errors into depolarizing502

errors. Specifically, we average the QST data obtained from503

50 equivalent circuits, which are generated by randomly re-504

placing the CZ gates in the original circuit with 16 equivalent505

gates realized by applying additional Pauli gates before and506
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after the CZ gate.507

Data availability508

The data generated in this study have been de-509

posited in the Figshare database under accession code510

https://doi.org/10.6084/m9.figshare.30698342511

Code availability512

The codes for numerical simulations are available at513

https://doi.org/10.6084/m9.figshare.30698342514
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Fig. 1. Overview for implementing vortex interactions using a superconducting quantum chip. a, Vortex pairs generated by paddling
in natural fluid systems. b, Laboratory-induced vortex interactions, leading to a leapfrogging configuration (Reprinted from Lim (1997) [69],
with the permission of AIP Publishing.). c, Schematic of our superconducting quantum chip, where all qubits are arranged in a square lattice
with nearest-neighbor couplings. Blue and green circles represent the spatial and temporal qubits used in our experiment. d, The initial state
of a four-vortex-particle system, which can be expressed as the tensor product of |ψ0⟩ that encodes the initial spatial information of the vortex
particles and a uniform superposition state that encodes the temporal information. The quantum state is prepared with np spatial qubits and
nt temporal qubits. Here, we take np = 2 and nt = 3 for illustration. e, System’s final state, where each basis state of the temporal qubits is
entangled with the corresponding spatial state, |ψi⟩, with i indexing the time step. f, The quantum parallel evolution enabled by our circuit.
Fk represents the unitary that evolves the system for 2k−1 time steps, with k ranging from 1 to nt.

Fig. 2. The evolution circuit of the QVM method. The circuit consists of np spatial qubits encoding the spatial state of vortex particles
and nt temporal qubits encoding the temporal information. The spatial qubits are initialized via the "State Prep." module, while the temporal
qubits are prepared in a uniform superposition state using Hadamard gates. The quantum parallel evolution illustrated in Fig. 1f is achieved
through sequentially applying the controlled-Fk operations to the system, with the temporal and spatial qubits being the control and target,
respectively.

Fig. 3. Experimental results of nonlinear interactions in vortex systems. a, Trajectories of vortex particles obtained from ideal (noiseless)
simulation, noisy simulation, and experimental data. b, Fidelity and the position deviations as functions of time. The fidelity F at each time
step t is defined as F = | ⟨ψt

ideal|ψt
exp⟩ |2, where |ψt

exp⟩ and |ψt
ideal⟩ denote the state vector of the spatial qubits obtained through experiment

and noiseless numerical simulation, respectively. The position deviation is defined as the Euclidean distance between the vortex particles in
the experiment and that in noiseless simulation d =

∑Np

n=1 |r⃗
n,t
exp − r⃗n,t

ideal|, where r⃗n,t
exp and r⃗n,t

ideal denote the coordinates of the vortex particle n
at time t obtained through experiment and noise-free simulation, respectively. c,d, Velocity fields and streamlines induced by vortex particles
at t = 24, 44, 62, and 81, obtained in the experiment (c) and noiseless simulation (d).

Fig. 4. The simulation results of turbulent vortex particle system and viscous vortex particle system. a, Flow field visualization rendered
based on vortex particle position data from initial time to t = 128. b, Velocity distribution of the flow field at t = 128. c, Flow field
visualization rendered based on vortex particle position data from the initial time to t = 384. d, Velocity distribution of the flow field at
t = 384. e,f Evolution of vortex particles in a viscous fluid computed using QVM (e) and LVM (f).
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