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Vortex interactions are commonly observed in atmospheric turbulence, plasma dynamics, and col-
lective behaviors in biological systems. However, accurately simulating these complex interactions is
highly challenging due to the need to capture fine-scale details over extended timescales, which places
computational burdens on traditional methods. In this study, we introduce a quantum vortex method,
reformulating the Navier-Stokes (NS) equations within a quantum mechanical framework to enable the
simulation of multi-vortex interactions on a quantum computer. We construct the effective Hamiltonian
for the vortex system and implement a spatiotemporal evolution circuit to simulate its dynamics over
prolonged periods. By leveraging eight qubits on a superconducting quantum processor with gate fideli-
ties of 99.97 % for single-qubit gates and 99.76 % for two-qubit gates, we successfully reproduce natural
vortex interactions. Overall, we establish a framework that reformulates vortex dynamics into a nor-
malized wavefunction representation compatible with quantum system unitary evolution, combined with
the designed spatiotemporal encoding scheme, providing a concrete pathway toward leveraging quantum

resources in fluid systems.

INTRODUCTION

Vortices in fluids constitute a core component of complex
flow behaviors, encompassing phenomena such as tropical cy-
clones [1-3], ocean currents [4—6], microfluidics [7, 8], as
well as plasmas and magnetofluids [9-13]. Vortex interac-
tions, which involve complex behaviors like vortex pairing
and the leapfrogging effect (as shown in Fig. 1a and Fig. 1b),
affect energy transport, momentum exchange, and the scale
cascade process in fluids, ultimately determining turbulence
characteristics and its evolution [14-17]. However, simulat-
ing these critical and intricate structures using classical com-
putation is highly challenging, as achieving the necessary
spatial and temporal resolution to capture fine-scale details
over extended timescales demands massive computational re-
sources [18-21], often exceeding practical limits. This com-
plexity has spurred the development of advanced methods to
address the computational bottlenecks while maintaining ac-
curacy.

Recent progress in quantum computing presents a promis-
ing avenue to address these challenges, as emerging research
on universal quantum partial differential equation (PDE) /
ordinary differential equation (ODE) solvers[22-29] demon-
strates potential for application in computational fluid dy-
namics (CFD) by leveraging quantum algorithms to replace
key components of traditional solvers based on the fluid gov-
erning equations[30-37]. Additionally, alternative fluid dy-
namics descriptions optimized for quantum computing have
been proposed, including quantum algorithms inspired by
the lattice Boltzmann method [38—42], quantum simulations
based on Schrddingerization [43—45], and the hydrodynamic
Schrodinger equation [46—48], which is inherently more suit-
able for quantum computing than the conventional Navier—
Stokes (NS) equations [49].

Although quantum computing has demonstrated its poten-
tial in fluid mechanics, simulating fluid motion on actual
quantum devices based on existing algorithms remains chal-
lenging. Current research into complex phenomena like vor-
tex interactions remains partially constrained by the reliance
on Eulerian methods, whose high spatial resolution require-
ments for accurate fluid behavior capture consequently in-
crease quantum resource demands as qubit needs scale with
grid resolution, making such implementations challenging
on present noisy intermediate-scale quantum (NISQ) hard-
ware [50]. We adopt Lagrangian vortex methods (LVM) that
circumvent the limitations of Eulerian formulations, which are
commonly used in the CFD community [S1]. Furthermore,
their intrinsic conservation laws governing vorticity evolution
in high-Reynolds-number flows exhibit inherent compatibility
with unitary quantum evolution [52, 53], thereby establishing
a promising pathway for developing quantum simulations that
preserve the conservation laws of fluid systems.

Moreover, many quantum algorithms for simulating the
time evolution of a system typically require a measurement
at every time step to extract information necessary for study-
ing dynamical behavior, computing physical quantities, and
optimizing algorithms. However, since measurements col-
lapse the quantum state, the quantum state at intermediate
steps must be re-prepared to continue the computation. We
design a novel spatiotemporal encoding scheme that embeds
both spatial and temporal information directly into the quan-
tum state. This approach prepares, in a single quantum-circuit
structure, a quantum state that encodes information at multi-
ple time steps in superposition, thereby eliminating the need
for stepwise state preparation. We note that the measurement
of a state for a specific time step requires repeated executions
of the quantum circuit to collect samples, with the number



of realizations for a given accuracy increasing with temporal
qubits.

In this work, we propose the quantum vortex method
(QVM), which directly focuses on vortices themselves instead
of relying on spatial discretization grids as in the Eulerian
methods, thereby enabling the reformulation of complex vor-
tex interactions in fluids within the framework of quantum
computing. The QVM transforms the evolution of the vortex
particle system into the evolution of a wavefunction. We adopt
a data-driven strategy to train evolution modules that capture
the dynamics of the wavefunction. Leveraging the trained
modules, we then design an efficient spatiotemporal evolu-
tion circuit to implement the wavefunction propagation, where
spatial qubits encode the spatial information of the vortex par-
ticle system, while auxiliary temporal qubits, initialized into
a superposition state via Hadamard gates, act as placeholders
for all time steps and later serve as control qubits to guide the
evolution module in the spatial circuit. Building upon these
theoretical developments, we implement the QVM on super-
conducting quantum processors to efficiently compute vortex
interaction dynamics. This approach bridges classical fluid
dynamics and quantum simulations, providing a new platform
for exploring both quantum and classical vortex phenomena
and offering a powerful tool for reinterpreting classical vortex
dynamics from a quantum perspective.

RESULTS
Quantum vortex method
The fluid dynamics are governed by the NS equations for the
velocity field u(x, t), which describe the evolution of the flow
under the influence of pressure p, viscosity v, and external
forces f:
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where D /Dt = 9/0t + u - V is the material derivative, and
p is the constant fluid density.

To adapt the NS equations for quantum computing, we uti-
lize the relationship between the vorticity field w and the ve-
locity field u (w = V x u), discretize the vorticity field into
N, point vortices, and map their coordinates to complex vari-
ables, leading to the generalized Schrédinger equation:
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Here H; denotes the j-th component of a vortex-interaction-
dependent Hamiltonian.

The wave function 1); is transformed from the j-th vortex
particle position ¢; with
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where Cj is an arbitrary constant, j indexes the vortex parti-
cles, and ) is a scaling factor that ensures the normalization
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condition: Z;\fz”l |12 = 1 att = 0. The time-dependent
function ¢(t) is defined as:
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where (-)* denotes complex conjugation, and I'y, denotes the
vortex strength of the k-th vortex.

The evolution of the quantum vortex system is governed by
equations that ensure the normalization of the quantum state,
facilitating accurate simulations of fluid flows with reduced
computational costs. Furthermore, we observe that when the
vortex particle system exhibits collective motion in a certain
direction, ¢(t) tends to remain relatively stable, exhibiting
only minor fluctuations around a constant value. Therefore,
we also provide a random sampling approximation method,
in which we randomly select a subset of time instances of ¢(t)
and average them to approximate their complete set.

We remark that the normalization mapping the evolution
of the vortex particle system to the evolution of a wavefunc-
tion is mathematically equivalent to the conventional vortex
method. To enable experiments on present hardware, approx-
imations and linearization are introduced to preserve leading-
order vortex interactions in a linear representation. A detailed
description of the QVM is in SUPPLEMENTARY NOTE 1.

Quantum encoding and evolution

The fluid dynamics are governed by Eq. (1), with vortex parti-
cle positions represented by ¢, which can be transformed into
wave function ¥ through Eq. (3), and ¥ evolves according to
Eq. (2). One may solve Eq. (1) on a grid, extract ¢, and apply
the transformation to obtain 1), thus creating the data needed
for training the nonlinear model described by Eq. (2).

We investigate a system governed by Eq. (2) with N,, vor-
tices, discretizing time evolution into evenly spaced NNV, in-
tervals. For the j-th vortex particle, its position in config-
uration space is mapped to a complex variable ¢;, with j
ranging from 1 to IV,. Subsequently, we introduce a trans-
formation that shifts and scales the complex coordinates ¢
to define new variables ;. This transformation ensures that
each component v; of the wave function is properly normal-
ized in terms of probability and remains conserved during the
evolution governed by QVM. In the case of time discretiza-
tion, the value of 9; at the i-th time step is denoted by 1/13
At each time step, the collection of z/Jé forms a state vector
i) = [ g, 0k, ]

To achieve efficient evolution, the initial flow field state
|1b°) is first encoded into a larger quantum system. Specif-
ically, the system’s initial state is prepared as a tensor prod-
uct of the flow field’s initial state, which is encoded in
n, = [logy, Np]| qubits, and a uniform superposition state
encoded in n; = [logy N;| qubits. This procedure effec-
tively generates multiple replicas of the flow field’s initial
state, as shown in Fig. 1d. These replicas explore different



temporal evolutions simultaneously, and evolve in a branch-
ing manner as depicted in Fig. 1f, eventually yielding a su-
perposition of flow field states at 2™t time steps |[¢p) =

\/%VT [199), |91), ..., WNt*l}]T , as shown in Fig. le.

The evolution process is implemented with the quantum cir-
cuit illustrated in Fig. 2. The core element of this circuit is
the evolution unitary Fy, with k ranging from 1 to n;, which
evolves the state from i-th time step to (i 4 2¥~1)-th time step
as [¢p+2" ") = F), |1?). At the beginning of the evolution, all,
qubits are initialized in the state |0). The system then under-
goes spatiotemporal evolution through a layered quantum cir-,
cuit architecture, evolving the quantum state into |1)). Specifi-
cally, the spatial qubits are initialized to the desired initial state,
through the “State Prep.” module, while the temporal qubits,
are prepared into a uniform superposition state via Hadamard
gates. The temporal qubits then act as control qubits, which,
sequentially control the implementation of evolution unitaries,
F,,F,,...,F; on the spatial qubits. ;

With this controlled-unitary scheme, the quantum state un-
dergoes a tree-like branching evolution from the initial state;
shown in Fig. 1f, ultimately resulting in a superposition of all.
system states across 2"¢ time steps. This design fully lever-
ages the parallelism of quantum computing, significantly im-
proving the efficiency of the simulation. See SUPPLEMEN-
TARY NOTE 2 for more details.

Experimental setup ‘
The algorithm is implemented with eight frequency-tunable:
transmon qubits on a flip-chip superconducting quantum pro-j
cessor, as shown in Fig. 1c, where blue circles represent thej
spatial qubits and green circles represent the temporal qubits.j
Each qubit can be controlled and readout individually. The
nearest-neighbouring qubits are connected with a tunable cou-
pler for tuning on and off the effective coupling strength of the
two qubits. The single qubit gate with a length of 24 ns is re-
alized by applying a Gaussian-shaped microwave pulse with
DRAG correction [54]. The two-qubit CZ gate, with a dura-j
tion of around 40 ns, is realized by tuning the frequencies and
coupling strength of the two qubits to achieve a close-cycle:
diabatic transition, a global process involving both qubits as a
combined system, between |11) (both qubits in their excited
states) and |02) (the first qubit in the ground state and the sec-
ond qubit in its second excited state), accumulating a 7 phasej
shift that transforms |11) into — |11). The median parallel
single-qubit gate and two-qubit gate fidelities are 99.97% and
99.76% respectively. See SUPPLEMENTARY NOTE 6 fof
details.

Nonlinear interactions in vortex systems :
The leapfrog vortex phenomenon [55], described by the NS..
equation, refers to a mode of motion that occurs when two or
more vortex rings interact, corresponding to four or more vor-...
tex particles in two dimensions. We consider the evolution of
a four-vortex-particle system under Eq. (2), with the positions
of the four particles initialized to be (0, 1), (0,0.3), (0, —1),

and (0,—0.3), respectively. We then apply the transforma-
tion defined in Eq. (3), with Cy = —1.7903 and I' =
(1,1,—1,—1) to obtain the corresponding quantum state. To
learn the Hamiltonian of the vortex system, we select 100 vor-
tex state pairs at time (¢;, ¢; +1) to form the training set. Here,
t; = 0.18(i — 1) with ¢ = 1,...,100 is equally sampled from
a time range of [0, 18], which roughly corresponds to the pe-
riod of a full leapfrogging cycle.

In our experiment, we use two qubits to encode spatial in-
formation of the four vortex particles. Additionally, six qubits
are used to represent 64 time steps in the evolution. We then
apply the QVM circuit based on the learned Hamiltonian to
prepare the quantum state that encodes the spatiotemporal dy-
namics of the entire evolution process. To obtain the evolution
trajectories of the vortex particles, we perform quantum state
tomography (QST) on the two spatial qubits, while simulta-
neously conducting projective measurements on all temporal
qubits. For each time step, we postselect the QST data for
the respective temporal state to reconstruct the density ma-
trix, from which the positions of the vortex particles can be
extracted (see Methods). Note that additional global phases,
which are experimentally unobservable, are numerically ap-
plied at each time step to preserve the symmetry of the system
and constrain particle motion along the positive real axis.

For comparison, we conduct ideal (noiseless) and noisy
simulations using the same circuit as in the experiments. In
the noisy simulation, we consider error models including de-
polarizing error of the single- and two-qubit gates, the qubit
decoherence, and readout error, with the error rates obtained
from experiments (see SUPPLEMENTARY NOTE 6). In
Fig. 3a, we plot the experimentally extracted trajectory of the
four vortex particles for time steps outside of the training set,
i.e., after t = 18. The results demonstrate a decent agreement
between experimental data and noisy simulation. To charac-
terize the experimental performance, we compare the recon-
structed state of the spatial qubits and positions of the vortex
particles with those obtained from noiseless numerical simu-
lation (Fig. 3b). The state fidelity values exceed 97% for all
time steps (Fig. 3b, upper panel). Besides, the position devia-
tions of all four vortex particles from the noiseless simulated
values remain below 0.2 throughout the evolution (Fig. 3b,
lower panel). Moreover, using the vortex particle position data
from both experimental and noiseless simulation results, we
reconstruct the velocity field for each time step based on the
Biot-Savart formula and visualize it in Fig. 3c and Fig. 3d,
respectively. For all illustrated time steps, the velocity fields
from experimental data are in close agreement with those of
the noiseless simulation, demonstrating that two vortex rings,
corresponding to four point vortices in 2D, alternately pass
through and move forward in a real flow field while maintain-
ing a degree of symmetry. An additional leapfrogging-type
example in SUPPLEMENTARY NOTE 5 empirically probes
how the learned evolution module F responds to small per-
turbations of the initial condition, where we observe indica-
tions of generalization beyond the training trajectory.



Turbulent vortex particle system o

To demonstrate the robustness of our method, we further im-345
plement it to simulate the dynamics of an eight-vortex-particle
system. The positions and vortex strengths of the eight vortex3+
particles are initialized randomly, akin to a turbulent vortex3
particle system. We numerically perform the simulation us-34
ing MindQuantum [56], an open-source quantum computing3s
framework for simulating and implementing quantum algo-%
rithms. We use three spatial qubits and nine temporal qubits t0%2
encode the positions and time steps, and then simulate the dy-%
namics of the system under Eq. (2). Specifically, we select 643+
equally spaced time steps, namely, N; € {0,4,8, ..., 252}35
within the time range [0, 256] as training data to directly learn3ss
the implementation circuit using the variational quantum algo-%7
rithm (VQA) described in the Methods. Applying the learnedsss
circuit to the first frame, we construct the wavefunctions forss®
all time steps from O to 511. Fig. 4(a—d) visualizes the re-

sults at time steps 128 and 384, respectively. The progression,,
from (a) to (c) illustrates how vortex dynamics evolve while

maintaining coherent structures, whereas the corresponding361
velocity distributions from (b) to (d) quantitatively capturing362
the spatial variations in flow velocity magnitude and direction.zj

365
Viscous vortex particle systems s
We now turn to a viscous system containing two vortex parti-s7
cles. For viscous vortex particle systems, our data-driven ap-ss
proach enables viscosity terms to be encoded within normal-ses
ized quantum state vectors that preserve their physical prop-s7
erties during evolution. Vortex particle strengths are implic-s71
itly incorporated within the evolution module during trainingsz
and rollout, and the velocity field can be recovered by ap-s7s
plying empirical relations for the time evolution of strength.s74
A detailed description can be found in SUPPLEMENTARY?7s
NOTE 1. In this simple two-vortex system, both particle posi-s7s
tions and viscous interactions can be represented through nor-s77
malized wavefunctions, enabling our QVM to compute vis-378
cous evolution directly from the learned circuit using VQAs7e
on MindQuantum. In contrast, the classical Lagrangian vor-sso
tex method method faces limitations in directly incorporatingss
viscosity terms into the vortex particle evolution. 382

We employ high-precision grid-based Eulerian methods for®®
solving the NS equation to compute the two-dimensional flowsss
field and extract vortex particle positions as the dataset. Thesss
spatial information is encoded using n,, = 1 qubits, while n;sss
= 4 qubits are allocated for encoding the temporal steps, withssr
the first four frames used to optimize the variational circuitsss
parameters. A comparison of the computational results be-sss
tween the QVM and LVM in Fig. 4e and Fig. 4f revealsso
that the former exhibits perfect agreement with ground truthses
data, whereas the latter demonstrates significant positional de-se2
viations indicative of strong viscous dissipation effects. Al-sss
though 16 frames, corresponding to 4 qubits, are actuallyass
computed, only frames 0, 2, ..., 14 are visualized due to space,,

limitations. 296

We remark that our method extends the idealized frame-sor

work by learning viscous diffusion from data; the example of
two co-rotating vortices in Fig. 4 shows vortex pre-merging
dynamics. Although we implicitly handle vortex particle
strengths, how to address topological changes induced by vis-
cosity [57], such as vortex splitting, merging, or reconnection,
has not yet been investigated due to the fixed structure of the
quantum representation. In conventional vortex methods, var-
ious particle reseeding and local re-meshing techniques, in-
cluding vortex element splitting, merging, and deletion, have
been developed to handle vortex reconnection [58, 59]. From
an implementation perspective, we could initialize partially
empty vortex element data structures to accommodate varia-
tions in vortex element count, suggesting that incorporating
auxiliary registers might provide a potential solution for han-
dling vortex reconnection in future work. We provide a more
detailed discussion in SUPPLEMENTARY NOTE 1.

DISCUSSION

This study introduces a quantum algorithmic framework de-
signed to simulate intricate vortex interactions in fluid dynam-
ics. By directly encoding vortex information into quantum
states, the approach circumvents the inherent challenges asso-
ciated with quantum encoding of fluid fields. The proposed
algorithm is validated through numerical simulations of tur-
bulent and viscous flows, as well as experimental simulation
of the leapfrogging vortex phenomenon on a superconduct-
ing quantum processor. The present QVM is most effective
when the flow admits a compact Lagrangian description with
a small number of coherent vortices. In such cases, the qubit
count scales with the number of vortices rather than a spa-
tial grid; time-parallel encoding reduces repeated state prepa-
rations; and measured observables can be tailored to vortex-
level quantities. By contrast, when smooth potential fields
are of primary interest or full-field observables are essential,
Schrodinger/Madelung-based formulations provide a natural
Eulerian pathway and remain preferable. We therefore view
the two families of approaches as complementary, and we out-
line extending our framework with data-driven reduced oper-
ators and improved measurement strategies as a path toward
bridging more complex scenarios. We provide a detailed dis-
cussion in SUPPLEMENTARY NOTE 1.

The theoretical benefit in circuit evolution primarily de-
pends on the complexity of the evolution module F; and
its count O(log N;), where N; denotes the number of dis-
crete time steps. For different temporal qubit indices k, the
complexity of F; shows no significant difference; as such,
we characterize each module as O(gcz). We conclude that
the overall complexity of the quantum circuit execution is
O(gcz log Ny), demonstrating a quantum benefit for predict-
ing long-time flow evolution as the algorithmic complexity
grows logarithmically with ;. We provide a detailed discus-
sion in SUPPLEMENTARY NOTE 4.

Our spatiotemporal encoding approach leverages both spa-
tial and temporal degrees of freedom to expand the Hilbert
space available for information storage, enabling an expo-



nential increase in capacity compared to classical systems
of similar scale. Specifically, our method processes all time
steps in a quantum superposition within a single workflow, re-
quiring log N, + log N; qubits compared with the classical
N, Ny units of storage for the same functionality. For sequen-
tial time-stepping dynamics, classical methods require stor-
age scaling linearly with system size N, while our quantum
approach exploits superposition and entanglement to encode
spatial information efficiently. Despite logarithmic overhead
from the time register, the quantum method still maintains a
benefit as problem size increases. This high-density encoding
scheme is particularly well-suited for storing dynamic or high-
dimensional data such as neural network parameters or phys-
ical trajectories. It also aligns naturally with quantum mem-
ory architectures, allowing efficient data retrieval via quan-
tum algorithms including Grover’s search and quantum ran-
dom access memory [60]. Applications span a wide range
of fields, including artificial intelligence [61], where data and
models can be encoded and processed in parallel, scientific
simulations involving complex many-body or time-evolving
systems, and quantum cryptography [62], where secure and
scalable storage of large keys or quantum states is essential.

Phenomena governed by viscosity and small scale physics,
such as splitting, co-rotating merging, are not yet fully mod-
eled. A complete quantum vortex particle solver for the in-
compressible NS equations remains a subject for further study.
Future advances in measurement techniques and error mitiga-
tion strategies, such as quantum error correction [63], noise
filtering, and more efficient tomography [64], along with the
development of novel quantum algorithms that reduce the
need for intensive measurements, could further alleviate the
computational burden and enhance the efficiency of quantum
simulations.

METHODS

Implementing the evolution modules

To implement the quantum circuit module, we leverage a data-
driven approach. We approximate the N,-particle system as
a linear system described by a parameterized effective Hamil-
tonian H(0), expressed as an IV, x N, complex Hermitian
matrix. The training time range Ti.;, is uniformly divided
into Nyain (NVirain = Ng) segments, based on which we extract
Nirain State pairs separated by a step size Aty as our training
data. While At.;, typically matches the evolution step size,
it can be adjusted for specific purposes such as data interpola-
tion.

For the training process, we construct a temporary unitary
evolution operator U (0; Atyyn) = e~ ' Her(@)Atwin hagsed on
the chosen step size Aty,,. We optimize the parameterized
unitary matrix to match the evolution for all state pairs in
the training set, thereby obtaining a linear dynamics. The
evolution matrices F, are then constructed similarly through
e~ iHeff(9)2k’1Atpfedm, where the time step Atpredicc can be the-
oretically arbitrary. With the determined evolution matrices
F, the CPFlow method [65] is then employed to obtain the

quantum circuit implementation with the optimal fidelity and
number of CZ gates corresponding to F;. The complexity of
the operator F, is heuristic and scales empirically with the
system size, as in the quantum approximate optimization al-
gorithm (QAOA) [66, 67]. Further details on the practical im-
plementation and complexity of F', are provided in SUPPLE-
MENTARY NOTE 3.

In addition to introducing a Hamiltonian as an intermediary
to accommodate hardware limitations, the evolution module
can alternatively be implemented by designing a parameter-
ized quantum circuit ansatz and employing VQA to minimize
the loss function, thereby learning vortex dynamics directly
from data. We theoretically derive the complete quantum cir-
cuit for loss evaluation and gradient computation methods in
SUPPLEMENTARY NOTE 3.

To validate the generalization and practical implementabil-
ity of our QVM, we evaluate the transfer performance of
its evolution module F; to nearby initial conditions against
a configuration-space dynamic mode decomposition (DMD)
surrogate trained on identical data. Results demonstrate that
the solution error of our method remains stable across varying
initial conditions, indicating that the trained operators can be
effectively reused for systems with the same vortex count and
similar configurations. Both methods show comparable per-
formance within the training horizon under small deviations,
while QVM exhibits slower error growth and tighter uncer-
tainty bands under larger perturbations. We hypothesize that
the normalization and unitary propagation act as an implicit
regularizer under distribution shift, improving robustness at
the cost of a small in-distribution bias. Future work could
explore a hybrid approach combining DMD’s interpretability
with QVM’s hardware-native generalization for enhanced per-
formance and adaptability. A detailed configuration and rep-
resentation is provided in SUPPLEMENTARY NOTE 5.

Extracting the spatial information

In our experiment, we use QST to obtain the density matrix of
the spatial qubits. We then extract the spatial information of
the vortex particles from the eigenstate of the density matrix
with the maximum eigenvalue. The method is valid for the
depolarization error with a sufficiently small error rate p. Un-
der the depolarizing error channel, the experimental density
matrix can be modeled as pexy — (1 —p)p + (p/2V)1, where
p = |¢) (| is the ideal density matrix and N is the number
of qubits. Thus, |¢) is also the eigenstate of the experimental
density matrix with an eigenvalue of 1 — p + p/2", which
remains the largest among all eigenvalues for a small p. How-
ever, in our experiment, there are also coherent error channels,
which can change the eigenstates of peyp, introducing addi-
tional errors during the spatial information extraction proce-
dure. To mitigate this error, we apply Pauli Twirling [68],
which can effectively transform all errors into depolarizing
errors. Specifically, we average the QST data obtained from
50 equivalent circuits, which are generated by randomly re-
placing the CZ gates in the original circuit with 16 equivalent
gates realized by applying additional Pauli gates before and



after the CZ gate.

Data availability ‘
The data generated in this study have been de-

posited in the Figshare database under accession code
https://doi.org/10.6084/m9.figshare.30698342

Code availability |
The codes for numerical simulations are available at
https://doi.org/10.6084/m9.figshare.30698342
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Fig. 1. Overview for implementing vortex interactions using a superconducting quantum chip. a, Vortex pairs generated by paddling
in natural fluid systems. b, Laboratory-induced vortex interactions, leading to a leapfrogging configuration (Reprinted from Lim (1997) [69],
with the permission of AIP Publishing.). ¢, Schematic of our superconducting quantum chip, where all qubits are arranged in a square lattice
with nearest-neighbor couplings. Blue and green circles represent the spatial and temporal qubits used in our experiment. d, The initial state
of a four-vortex-particle system, which can be expressed as the tensor product of \1/)0> that encodes the initial spatial information of the vortex
particles and a uniform superposition state that encodes the temporal information. The quantum state is prepared with n,, spatial qubits and
n. temporal qubits. Here, we take n, = 2 and n; = 3 for illustration. e, System’s final state, where each basis state of the temporal qubits is
entangled with the corresponding spatial state, |+/*), with 7 indexing the time step. f, The quantum parallel evolution enabled by our circuit.
F';, represents the unitary that evolves the system for 2571 time steps, with & ranging from 1 to n;.

Fig. 2. The evolution circuit of the QVM method. The circuit consists of n, spatial qubits encoding the spatial state of vortex particles
and n; temporal qubits encoding the temporal information. The spatial qubits are initialized via the "State Prep." module, while the temporal
qubits are prepared in a uniform superposition state using Hadamard gates. The quantum parallel evolution illustrated in Fig. 1f is achieved
through sequentially applying the controlled-F;, operations to the system, with the temporal and spatial qubits being the control and target,
respectively.

Fig. 3. Experimental results of nonlinear interactions in vortex systems. a, Trajectories of vortex particles obtained from ideal (noiseless)
simulation, noisy simulation, and experimental data. b, Fidelity and the position deviations as functions of time. The fidelity F' at each time
step ¢ is defined as F' = | (d)fdeadw;p) |2, where |1,Z)§Xp> and 1) denote the state vector of the spatial qubits obtained through experiment
and noiseless numerical simulation, respectively. The position deviation is defined as the Euclidean distance between the vortex particles in
the experiment and that in noiseless simulation d = fogl Fr — 7t |, where 7y and 72!, denote the coordinates of the vortex particle n
at time ¢ obtained through experiment and noise-free simulation, respectively. ¢,d, Velocity fields and streamlines induced by vortex particles

att = 24, 44, 62, and 81, obtained in the experiment (c¢) and noiseless simulation (d).

Fig. 4. The simulation results of turbulent vortex particle system and viscous vortex particle system. a, Flow field visualization rendered
based on vortex particle position data from initial time to ¢ = 128. b, Velocity distribution of the flow field at ¢ = 128. ¢, Flow field
visualization rendered based on vortex particle position data from the initial time to ¢ = 384. d, Velocity distribution of the flow field at
t = 384. e,f Evolution of vortex particles in a viscous fluid computed using QVM (e) and LVM (f).
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