
communications physics Article

https://doi.org/10.1038/s42005-024-01845-w

Simulating unsteady flows on a
superconducting quantum processor

Check for updates

Zhaoyuan Meng 1,5, Jiarun Zhong 2,5, Shibo Xu 2,5, Ke Wang2, Jiachen Chen2, Feitong Jin 2,
XuhaoZhu2, YuGao2, YaozuWu 2,ChuanyuZhang2,NingWang2, YirenZou2, Aosai Zhang2, ZhengyiCui2,
Fanhao Shen2, Zehang Bao 2, Zitian Zhu2, Ziqi Tan2, Tingting Li 2, Pengfei Zhang2, Shiying Xiong3,
Hekang Li2, Qiujiang Guo 2, Zhen Wang2, Chao Song 2 , H. Wang2 & Yue Yang 1,4

Recent advancements of quantum technologies have triggered tremendous interest in exploring
practical quantum advantage. The simulation of fluid dynamics, a highly challenging problem in
classical physicsbut vital for practical applications, emerges asapotential direction.Here,we report an
experiment on thedigital simulationof unsteady flowswith a superconductingquantumprocessor. The
quantum algorithm is based on the Hamiltonian simulation using the hydrodynamic formulation of the
Schrödinger equation. With the median fidelities of 99.97% and 99.67% for parallel single- and two-
qubit gates respectively, we simulate the dynamics of a two-dimensional (2D) compressible diverging
flowanda2Ddecayingvortexwith tenqubits.Note that the former case isan inviscidpotentialflow,and
the latter one is an artificial vortical flow with an external body force. The experimental results well
capture the temporal evolution of averaged density and momentum profiles, and qualitatively
reproduce spatial flow fields with moderate noises. This work demonstrates the potential of quantum
computing in simulating more complex flows, such as turbulence, for practical applications.

Simulatingfluid dynamics on classical computers at a highReynolds number
(Re) has significant applications in various fields, such as weather forecasting
and airplanedesign.However, it remains challengingdue to thewide range of
spatial and temporal scales involved in turbulent flows. Its computational
cost, scaling with OðRe3Þ operations for the direct numerical simulation of
turbulence1, is prohibitively expensive for engineering applications2,3. The
emergence of quantum computing has garnered attention as a potential
solution to the computational limitations in classical computing4–7. Lever-
aging laws of quantummechanics such as superposition and entanglement, a
quantum processor can manipulate exponentially large degrees of freedom
that are intractable onclassical computers,making it apromisingplatformfor
empowering the next-generation simulation method for fluid dynamics8–10.
In particular, quantumcomputing of turbulence, one of themost challenging
problems in classical physics11, can serve as a compelling demonstration of
quantum utility and practical quantum advantage12–15.

There have been two major approaches to the quantum simulation
of fluid dynamics. Based on solving the governing equations for fluids,
hybrid quantum-classical algorithms are proposed10,16–27, where quantum

computing is employed to handle highly parallelizable operations (e.g., sol-
ving linear systems28,29). The efficiencies of thesemethods are often burdened
by the frequent data exchanges between classical and quantumhardwares, as
thepreparationand statisticalmeasurementof arbitraryquantumstate canbe
more time-consuming than the calculation procedure9,30. Moreover, for the
present noisy intermediate-scale quantum (NISQ) devices, the state pre-
paration and measurement (SPAM) errors could accumulate during the
time-marching in these algorithms, limiting their accuracy for near-term
applications31,32. To alleviate these problems, Hamiltonian simulation, which
has been widely used in exploring quantum many-body physics on NISQ
devices13,32–36, was proposed as a promising approach to simulate fluid
dynamics37–52. In this simulation, afluidflow ismapped to a quantumsystem,
which can then be evolved and detected on a quantum processor without
invoking intermediate quantum state measurement and re-initialization.

However, obstacles remain. First, general fluid dynamics has non-
linear characteristics, while quantum operations except measurement
are linear. Incorporating the nonlinearity into a quantum algorithm
poses significant challenges. Second, while minimizing the influence of
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SPAM errors, the Hamiltonian simulation can still be affected by the
inevitable errors occurred during the execution of quantum evolution on
the NISQ devices. A proof-of-principle demonstration of the capability
of the contemporaryNISQ devices in simulating fluid dynamics remains
elusive. Here we report the end-to-end quantum simulation of two-
dimensional (2D) unsteady flows, discretized spatially with up to 1024
grid points, on a superconducting quantum processor. We first consider
a simple compressible diverging flow and reveal its dynamics according
to the hydrodynamic formulation of the corresponding Schrödinger
equation. Then, by involving the two-component wave function, we
realize the quantum simulation of a decaying vortex with nonlinear
vortex dynamics.

As sketched in Fig. 1, the simulation (referred to as “experiment”
below) is implemented with ten qubits on a superconducting processor53–55.
Through optimizing device fabrication and carefully tuning controlling
parameters, we realize median fidelities of 99.97% (99.67%) and 99.3% for
parallel single- (two-) qubit gates andmeasurements, respectively.With the
high fidelities and by employing efficient quantum circuits for state pre-
paration and Hamiltonian simulation, we obtain the average density and
momentumprofiles thatwell capture key features of the targetingflows.The
present study demonstrates the capability of NISQ devices to simulate
practical fluid flows, indicating the potential of quantum computing in
exploring turbulent flows.

Results
Framework and experimental setup
In our algorithm, we encode the flow state into the nψ-component wave
function ψ � ½ψ1; � � � ;ψnψ

�T, with nψ ∈ {1, 2}. Based on the generalized

Madelung transform, the flow density and momentum can be extracted as

ρ �Pnψ
j¼1jψjj2 and J � i_

2m

Pnψ
j¼1ðψj∇ψ�

j � ψ�
j ∇ψjÞ, respectively37,45,47.

Without loss of generality, we set the reduced Planck constant ℏ = 1 and the
particle massm = 1. The fluid velocity and vorticity are defined by u ≡ J/ρ
andω≡∇×u, respectively.Note that for a single-componentwave function

ψ, the velocity can be expressed as u ¼ i
2∇ log ψ�

ψ , leading to ω = 0. To

introduce finite vorticity, we need nψ = 245. We simulate fluid dynamics by
evolving the wave function under the HamiltonianH =−∇2/2+V, where
the potentialV, whichmay contain interaction terms amongdifferentwave-
function components, gives the body force in the fluid flow45. Using the
Trotter decomposition56, the evolution of the wave function can be
approximatedby a series of unitary operators (see SupplementaryNote 1 for
details).

In this work, we focus on the dynamics of 2D flows without con-
servative body forces in a periodic box x∈ [−π, π]2, which is discretized into
2nx × 2ny uniform grid points. The corresponding wave function of each
component can be expressed in the computational basis of nx+ ny qubits as

∣ψjðtÞ
E
¼ 1

k ψj k2

X2ny�1

l¼0

X2nx�1

k¼0
ψjðxk; yl; tÞ∣kþ 2nx li; ð1Þ

where the coordinates xk=−π+ kΔx and yl=−π+ lΔy, withΔx ¼ 2π=2nx

and Δy ¼ 2π=2ny , respectively. For vortical flows, an additional qubit is
required to encode the two-component wave function. In the absence of
conservative body forces, the Hamiltonian reduces to H ¼ �ð∂2x þ ∂2yÞ=2.
The corresponding evolution can be realized without Trotterization as

e�iHt ¼ ei∂
2
x t=2ei∂

2
y t=2 ¼ UxðtÞUyðtÞ: ð2Þ

Fig. 1 | Schematic for the quantum simulation of fluid dynamics. The initial flow
field (exemplified pictorially by a spiral vortex) discretized on a uniform grid in (a) is
encoded by the multi-component wave function in (b), followed by state prepara-
tion. c Sketch of device topology. Qubits (circles) are arranged in a square lattice and
connected through tunable couplers (bars). The ten qubits used here are labeled by
Q1–Q5 (blue) and Q6–Q10 (green), encoding the wave function in the x- and y-
directions, respectively. d Sketch of the quantum circuit for simulating the 2D

unsteady flows. TheHamiltonian simulation is realized by transforming a flow state
into the momentum space with quantum Fourier transforms dQFTx and dQFTy ,
applying unitary evolutions e�ik̂

2
x t=2 and e�ik̂

2
y t=2, and finally transforming the state

back to the coordinate space. The circuit is further compiled with native gate sets
(arbitrary single-qubit gates and two-qubit CZ gate) before the experimental
execution. eAt a given time t, the flow field is extracted bymeasuring a specific set of
Pauli strings.
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In the computational basis, the evolution operators can be digitized
according to

UαðtÞ ¼ dQFTy
αe

�ik̂
2
αt=2dQFTα; ð3Þ

where dQFTα denotes the unitary of quantum Fourier transform along the
direction α ∈ {x, y}, and the wavenumber is given by

k̂α ¼ � 1
2

I2nα þ
Xnα
j¼1

2nα�jẐj

 !
þ 2nα Ẑ1: ð4Þ

Here, Ẑj denotes the Pauli operator of the j-th qubit and I2nα the 2nα × 2nα
identity matrix. See Supplementary Note 2 for detailed derivations. The
overall quantum circuit for simulating 2D unsteady flows is shown
in Fig. 1d.

We implement the algorithmon a flip-chip superconducting quantum
processor53 using ten frequency-tunable transmon qubits labeled as Qj for
j = 1–10, as sketched in Fig. 1c. In the simulation, we set nx = ny = 5, cor-
responding to a solution domainwith 25 × 25 = 322 grid points. Each qubit is
individually controlled and readout. The nearest-neighboring qubits are
capacitively connected through a tunable coupler, which is also a transmon
qubit, for turning on and off the effective coupling between the two qubits.
The single-qubit gate is realized by applying a 30 ns-long Gaussian-shaped
microwave pulse with DRAG correction57. The two-qubit CZ gate, with a
length of 40 ns, is realized by carefully tuning the frequencies and coupling
strength of the neighboring qubits to enable a closed-cycle diabatic transi-
tion of ∣11i $ ∣20i (or ∣02i)58. The median parallel single- and two-qubit

gate fidelities are 99.97% and 99.67%, respectively. See Supplementary
Note 3 for details.

Simulation of a diverging flow
As a first example, we demonstrate the quantum simulation of a 2D
unsteady diverging flow, which is a simple model of nozzle in compressible
potential flow. The flow is initially uniform in the x-direction, with mass
concentrated near y = 0, which is described by a density of ρðx; y; 0Þ ¼ e�y2

and a velocity of u(x, y, 0) = ex. The flow has the vanishing vorticity and can
be encoded into a single-component wave function ψðx; y; 0Þ ¼ e�y2þix. In
practice, we use CPFlow59 to synthesize the quantum circuit for initial state
preparation, which fits the native gate set (i.e., arbitrary single-qubit gates
and two-qubit CZ gates) and qubit layout topology of our device with
minimal numbers of CZ gates. With an optimal depth of 13, the resulting
circuit can generate a quantum state with an overlap above 0.999 to the
target one in the ideal case (i.e., without any gate errors). After preparing the
initial state, we apply quantum circuits of the evolution unitaries with
specific times of t = 0, π/4 and π/2, respectively. The evolution circuits are
also optimizedwithCPFlow, leading to a total circuit depth of around30.To
verify the simulation, we fully characterize the flow by measuring both the
density and momentum distributions. While the density can be directly
measured in theZbasis, the detectionof themomentumrequiresmeasuring
the quantum state in 62 different bases (see Supplementary Note 3 for
details).

Figure 2a–c show the experimental data for the evolution of the density
contour with streamlines for the diverging flow. Under the symmetry with
respect toy=0, the experimental data (lowerhalf) is comparedwith the ideal
result (upper half) from the exact solution in Eq. (S17) in Supplementary

Fig. 2 | Comparison of experimental results on the superconducting quantum
processor with the ideal ones for the 2D diverging flow. Density contours and
streamlines are shown at (a) t = 0, (b) t = π/4, and (c) t = π/2. The flow is symmetric
about y = 0 (upper panel: exact solution; lower panel: experimental measurement).
The streamlines are color-coded by the momentummagnitude. d–f The x-averaged
profiles for ρ, Jx, and Jy at t = 0, π/4, and π/2 (dashed lines: exact solution; triangles:
experimental measurement with error bars denoting one standard deviation). The

density and momentum are obtained with 105 measurement shots, and the
experiment is repeated for five times. g–i Scatter plots comparing ideal and
experimental values for ρ, Jx, and Jy at t = 0, π/4, and π/2, along with the correlation
coefficients (marked at the upper left). Data point density is color-coded by the
kernel density estimation (KDE) from low (purple) to high (red) values.
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Note 2. Themass diffusion accompanies themomentumdiffusion from the
central region near y = 0 to lateral sides. The experimental data exhibit
qualitative agreements with ideal distributions. The discrepancies are
mainly due to quantum gate errors, as even an single-qubit gate error of
5 × 10−4 can cause the stripe-like artifacts in experimental density contours
(see Supplementary Note 4). Figure 2d–f plot profiles of ρ as well as two
momentum components Jx and Jy. The profiles are averaged in the x-
direction due to the homogeneity in x in this diverging flow. Their experi-
mental and ideal results show good agreements. Thus, the quantum
simulation on the NISQ device is able to predict unsteady flow evolution.
Figure 2g–i present scatter plots comparing ideal and experimental values of
ρ, Jx, and Jy at different times. Amajority of data points, indicated by red for
high data point density, align closely with the diagonal. In Fig. 2g, h, a
considerable portion of experimental data falls below the actual values
(orange), suggesting the effect of noises akin to filtering on the data. The
correlation coefficients between the experimental and ideal values of ρ, Jx,
and Jy are 0.954, 0.905, and0.607, respectively. Thenotable error for Jydata is
likely due to that the small value of Jy is prone to be influenced by noises
(detailed in Supplementary Note 4).

Simulation of a decaying vortex
Next, we simulate a 2D vortex, a simple model of tornado and whirlpool, in
the Schrödinger flow45 (detailed in Supplementary Note 2). We construct
the vortex via rational maps60 in the periodic domain, which features a
decaying vorticity profile f ðrÞ ¼ e�ðr=3Þ4 along the radial distance
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Denoting the two components of the wave function as ψ+

and ψ−, the initial states ψþðx; y; 0Þ ¼ u=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj4

p
and ψ�ðx; y; 0Þ ¼

v2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ jvj4

p
are determinedby the complex functionsu=2(x+ iy)f(r)/

(1+ r2) and v = i[r2 + 1− f(r)]/(1 + r2), respectively.
Our approach transforms the flow characterized by nonlinear vortex

dynamics and a distinct body force into a linear two-component Schrö-
dinger equation via the generalized Madelung transformation. Typically,
converting nonlinear equations to linear form involves increasing the
dimensionality26,61,62, whereas the present approach, similar to the Cole-
Hopf transformation63, does not increase the dimensionality. Thus, we solve
the linear Schrödinger equation, avoiding the challenge of nonlinearity.
However, this merely serves as a demonstrative example of the flow simu-
lation capabilities on NISQ devices. For a general form of the body force, or
the Laplacian dissipation forNewtonian fluids in particular48, the associated
two-component Schrödinger equationbecomes nonlinear.How to solve the
nonlinear Schrödinger equations efficiently using quantum algorithms
remains anopenproblem64–66. In thisflowwithV=0 in theHamiltonian, the
two components of the wave function decouple during the entire evolution,
so that we can simulate their dynamics separately without using an addi-
tional qubit. The circuits for preparing ψ+ and ψ−, obtained based on
CPFlow, have depths of 23 and 27, respectively, which canprepare quantum
states with overlaps above 0.993 to the target ones in the ideal case.We then
evolve ψ+ and ψ− independently for specific times and measuring the
correspondingdensities ρ± andmomentum J±,with theprocedure similar to
the diverging flow case. The velocity is then obtained by u = (J+ + J−)/
(ρ+ + ρ−), which introduces the nonlinearity for vortex dynamics, and the
vorticity is calculated as ω = ∂uy/∂x − ∂ux/∂y.

Figure 3 (a),(b) plot the evolutionof theω-contour and streamlines from
experimental and ideal results at t=0,π/4, andπ/2. Initial circular streamlines
evolve into spirals with vorticity decay under the body force in the Schrö-
dinger flow. The experimental results in Fig. 3(b) clearly capture the vortex
evolution. The vorticity magnitude is underestimated due to quantum gate
noises and sampling errors. At the vortex outer edge, the flow field exhibits
turbulent artifacts which enhances vortex dissipation. It is accidental to
observe that the energy spectrum of the noisy experimental data appears to
exhibit the k−5/3 scaling law as in classical turbulence (see Supplementary
Fig. S10). Therefore, on the other hand, the NISQ hardware noises could
potentially be leveraged to model small-scale turbulent motion67.

The θ-averaged profiles for ω in Fig. 3c show the successful initial
construction of the vortex using the two-component wave function. The

peak of 〈ω〉θ decays notably faster in the experimental results compared to
the exact solution, due to the vortex being displaced from the domain center
under spurious turbulent motion and the numerical error in computing ω
with differentiation of noisy data.

Discussion
We have conducted experiments on the digital quantum simulation of
unsteady fluid flows with a superconducting quantum processor. Our
algorithm employs the hydrodynamic formulation of the Schrödinger
equation, apt for unitary operations in quantum computing. The compu-
tational complexity for the state evolution (detailed in Supplementary
Note5) inEq. (2) isOðn2Þ68,with the totalnumberofqubitsn=nx+ny. This
represents an exponential speedup over the classical counterpart whose
complexity isOðn2nÞ. The quantum simulations well capture the evolution
of averaged profiles of the density and momentum in the 2D compressible
diverging potential flow and the nonlinear decaying process of the 2D
vortex. Our results showcase the capability of simulating fluid dynamics on
NISQ devices, and indicate the promise of quantum computing in probing
complex flow phenomena such as turbulence and transition in engineering
applications.

Looking forward, despite the demonstration in the present work,
realizing quantum advantage for the simulation of practical fluid flows with
NISQ devices remains an outstanding challenge. The quantum repre-
sentation employed in the present experiment withNISQ devices is tailored
from the full quantum representation for theNavier-Stokes equation47, with
introducing the artificial body force into the flow. Therefore, methods such
as increasing dimensionality69–71 should be explored to incorporate the
nonlinearity and the non-Hermitian Hamiltonian of a general flow47,72 into
the quantum algorithm. In addition, the preparation of initial quantum
states for general velocityfields is an openproblem46,73. Variational quantum
algorithms offer a promising approach to approximate the initial quantum
state directly through numerical optimization74. The full characterization of
a flow field requires an exponentially large number of measurement shots,
and it would be important to find flow statistics that can be measured
efficientlywithout undermining the overall quantumadvantage. Finally, the
potential inclusion of quantum error correction is desired to fully harness
the strengths of the quantum simulation of fluid dynamics.

Methods
Device and experimental setup
The quantum processor was fabricated using the flip-chip recipe, where all
qubits and couplers are located on a top chip, and most of the control/
readout lines and readout resonators are located on a bottom chip. These
two chips have lithographically defined base wirings made of tantalum and
junction loops made of aluminum, and are galvanically connected via
indium bumps. The processor was loaded into a multilayer printed circuit
board enclosure,whichwas thenmounted inside a dilution refrigeratorwith
the base temperature down to 15 mK. There are 11 × 11 frequency-tunable
transmon qubits encapsulated in a square lattice on the quantumprocessor,
and the adjacent qubits are connectedby tunable couplers for realizinghigh-
fidelity quantum gates which is essential for the experiment.

In this work, we select ten qubits to carry out the quantum simulation,
as shown in Fig. 1c. We employ the native gate set {U(θ, φ, λ), CZ} to
implement the desired experimental circuits, whereU(θ, φ, λ) = Rz(φ)Ry(θ)
Rz(λ) denotes a generic single-qubit gate with three Euler angles, and CZ
denotes the two-qubit CZ gate that fits the layout topology of our device. By
optimizing the control procedure, we realize fidelities of 99.97% and 99.67%
for parallel single- and two-qubit gates applied on the ten qubits used in this
experiment, respectively.

Quantum representation of fluid flows
We encode the flow states in the nψ-component wave function
ψ � ½ψ1; � � � ;ψnψ

�T, for potential flows with nψ = 1 and vortical flows with

nψ = 2. With the generalized Madelung transform, the flow density,
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momentum, and velocity are ρ �Pnψ
j¼1 jψjj2, J � i_

2m

Pnψ
j¼1

ðψj∇ψ�
j � ψ�

j ∇ψjÞ, and u ≡ J/ρ, respectively.

Then, we consider a nψ-component time-dependent Schrödinger
equation

i_
∂

∂t
ψj ¼ � _2

2m
∇2 þ V

� �
ψj; j 2 f1; � � � ; nψg ð5Þ

with a real-valued potential V. The continuity equation

∂ρ

∂t
þ ∇ � ðρuÞ ¼ 0 ð6Þ

follows from the conservation of probability current. The momentum
equation is obtained as a standard compressible Euler equation

∂u
∂t

þ u � ∇u ¼ � 1
ρ
∇p� ∇UF þ f ; ð7Þ

with the pressure p, an conservative potential UF, and a body force f. For
potentialflows, we have p=0,UF ¼ V=m� _2∇2 ffiffiffi

ρ
p

=ð2m2 ffiffiffi
ρ

p Þ, and f= 0.
For vortical flows, we have p = ℏζ ⋅ s/m, UF = V/m − ℏ2∣∇s∣2/(8m2ρ2), and
f=ℏ∇s ⋅ ζ/(mρ), with the spin vector s≡ψ*iψ and a vector ζ≡−∇ ⋅ (∇s/ρ)/4
(see Supplementary Note 1 for details).

Note that in practical fluid flows, the momentum equation does not
include the term f. This termcanbe regarded as an external body forcewith a
dissipative effect45,75. The corresponding “Schrödinger flow” can resemble
the viscous flow in terms of the similar flow statistics and structures45.

Circuit optimization
The preparation of an arbitrary n-qubit quantum state generally requires an
order of 2n quantum resources76, either circuit depth or ancilla qubits, which
is prohibitive for largen on the current device. Besides, the quantumcircuits
for realizing the QFT require further compilations to adapt the device
topology. To circumvent these challenges, we adopt the CPFlow package
recently introduced in ref. 59 to reduce the circuit depth for the initial state
preparation and the state evolution.

The CPFlow is a variational circuit synthesis method. The program
first use the parameterized controlled phase (CP) gates to integrate the
discrete search into the continuous optimization procedure. The loss
function is carefully designed to balance the fidelity among the optimized
template, the target unitary (or state vector), and the circuit depth. After
optimization, each CP gate is replaced by an identity (a CZ) gate if its angle
lies within a threshold distance away from 0 (or π), or otherwise by their CZ
decompositions. Once a prospective circuit is found, it is further optimized
to obtained the final result. The fidelities of the optimized circuits and the
corresponding depths for different simulation cases are listed in Supple-
mentary Tables S1 and S2.

Detection of flow states
In our experiment, the flow density is obtained by measuring diagonal
elements of the density matrix. The matrix elements of the measuring
operator are

ρ̂ðm; lÞ
j; k ¼ δj;2nx mþlδ2nx mþl; k; ð8Þ

where the indices l ¼ 0; 1; . . . ; 2nx � 1 and m ¼ 0; 1; . . . ; 2ny � 1 denote
the discretized coordinates in the x- and y-directions, respectively.

For the momentum, we employ the finite difference method to
approximate derivatives. The corresponding measuring operator (non-
bounded) is expressed as

Ĵ
ðm; lÞ
j; k ¼ i

2 δ2nx mþl; k
δj;2nx mþlþ1�δj;2nx mþl�1

2Δx ex
�h

þ δj;2nx ðmþ1Þþl�δj;2nx ðm�1Þþl

2Δy ey
�

�δj;2nx mþl
δ2nx mþlþ1; k�δ2nx mþl�1; k

2Δx ex
�

þ δ2nx ðmþ1Þþl; k�δ2nx ðm�1Þþl; k

2Δy ey
�i

:

ð9Þ

An intuitive strategy toobtain themomentum isquantumstate tomography
(QST). However, QST requires an exponentially increasing number of
measurements, so it is impractical with a system size as large as ten qubits.
Alternatively, we decompose each desired observable as a sum of Pauli
strings and pick the necessary Pauli bases to infer expectation values of all
required Pauli strings (see SupplementaryNote 3 for details). As a result, the
number of measurements is reduced to 62 in our work.

Consequently, the embedded flow state including the density and
momentum can be extracted with 63 measurements. Each measurement
involves 105 single shots to build the probability distribution, consuming
approximately 20 s at a sampling rate of 5 kHz. The experiment is repeated
five times for each flow case.

Data availability
The data presented in the figures and that support the other findings of this
study are available for download at https://doi.org/10.6084/m9.figshare.
27173766(ref. 77).

Code availability
Thedata analysis andnumerical simulation codes for this study are available
for download at https://doi.org/10.6084/m9.figshare.27173766(ref. 77).
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Fig. 3 | Comparison of experimental results on the superconducting quantum
processor with the ideal ones for the 2D vortex.Vorticity contours are depicted for
(a) the exact solution and (b) the experimental result. Streamlines are color-coded by
velocity magnitude. c Comparison of 〈ω〉θ at t = 0, π/4, and π/2 (dashed lines: exact
solution; circles: experimental result with error bars denoting one standard devia-
tion), where 〈ω〉θ denotes the vorticity averaged over the θ-direction in polar
coordinates (r, θ). The data is obtained with 105 measurement shots, and the
experiment is repeated for five times.
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