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ABSTRACT

We extend the vortex-surface field (VSF), a Lagrangian-based structure identification method, to investigate the vortex reconnection in tem-
porally evolving transitional pipe flows. In the direct numerical simulation (DNS) of round pipe flows, a radial wave-like velocity disturbance
is imposed on the inlet region to trigger the transition. The VSF isosurfaces are vortex surfaces composed of vortex lines, and they are con-
centric tubes with different wall distances at the initial time. The VSF evolution is calculated by the two-time method based on the DNS
velocity field, and it is effective to identify the vortex reconnection. In the early stage of transition, the vortex surfaces are first corrugated
with streamwise elongated bulges. The escalation and descent of vortex surfaces characterize the generation of high- and low-speed streaks
and streamwise vortex pairs, along with the surge of the wall-friction coefficient. The resultant highly coiled and stretched vortex loops then
reconnect with each other under the viscous cancelation mechanism. Subsequently, successive vortex reconnections occur via a “greedy
snake” mechanism. The streamwise vortex loops consecutively capture the secondary vortex rings pinched off with self-reconnection, form-
ing long helical vortex loops spanning over ten pipe radii in the streamwise direction. Finally, the Kelvin–Helmholtz instability of the shear
layer at the trailing edge breaks down the streamwise helical vortex loops into turbulent spots.
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I. INTRODUCTION

The transition to turbulence in pipe flows is one of the most fun-
damental and challenging problems in fluid mechanics over a century1

and is of importance in engineering applications, such as drag reduc-
tion.2,3 Fundamental issues in the pipe transition include the route to
turbulence, the critical Reynolds number, and the mechanism of
coherent structures.4–8

The pipe flow with a laminar profile is linearly stable, which
means that, in principle, sufficiently small disturbances decay for all
Reynolds numbers.9 The subcritical feature of the pipe transition
requires a disturbance with a finite magnitude to trigger the transition.
The bypass transition is a common route in pipe transition studies,
e.g., the blow and suction disturbance is often used to trigger the bypass
transition to turbulence.10 The formation of velocity streaks is one of
the primary sources of instability in the bypass transition, and its tran-
sient growth11–13 can lead to the secondary instability of streaks with
sinuous and varicose modes. The intermittent occurrence of turbulence
in pipe transitions manifests itself as puffs and slugs.14–16 These local-
ized structures expand, decay, and split in streamwise extent, resulting
in a finite lifetime around a critical Reynolds number.17,18 Some

phenomenological models19 have been developed to characterize a
bifurcation scenario at a macroscopic level to elucidate the origin of
these localized structures. However, the pipe transition is still
described as “abrupt and mysterious”18 without a detailed description
of the underlying flow physics. This mystery can be partially resolved
by the high-fidelity direct numerical simulation (DNS) of the spatially
developing transition in long pipes.20

In the Lagrangian view of the transition to turbulence, the vortex
reconnection21–24 with topological changes of vortex lines, in principle,
is a critical step.25 Most existing studies of the vortex reconnection
focused on relatively simple configurations of tube-like vortices, such
as vortex rings,26–28 orthogonal and antiparallel vortex tubes,29–32 and
vortex knots.33–35 However, there appears to be no report of the vortex
reconnection in the pipe transition due to its abrupt and complex
nature.

In order to effectively identify the vortex reconnection in the pipe
transition, we extend the vortex-surface field (VSF)36 to pipe flows.
The VSF is a Lagrangian-based method to characterize the evolution
of vortex surfaces consisting of vortex lines. This method has
been applied to the Klebanoff-type transitional channel flow25 and
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boundary layer.37 The VSF evolution is able to characterize the stretch-
ing, merging, rolling-up, and twisting of vortex surfaces to elucidate
the scale cascade in the transition. In particular, Zhao et al.25 identified
the reconnection of the hairpin-like vortical structures evolving
from the initial vortex sheets in opposite halves of the channel flow
using the VSF, and they found that the vortex reconnection plays a sig-
nificant role in the sudden increase of the wall friction in transitional
channel flows. A preliminary VSF study of the pipe transition38 argued
that the structural evolution of vortex surfaces in the transition
depends on the symmetry of flow boundary conditions, so the evolu-
tion of vortex surfaces in the pipe transition can be different from
those in the transitional channel and boundary-layer flows.25,37

In the present study, we utilize the VSF to investigate the vortex
reconnection in temporally evolving transitional pipe flows. The con-
tinuous evolution of vortex surfaces from a Lagrangian perspective
can shed light on the abrupt transition process in pipe flows with the
characterization of vortex reconnections. The outline of this paper is
as follows: in Sec. II, we describe the DNS setup and implementation
of the VSF in transitional pipe flows. In Sec. III, we visualize and quan-
tify the evolution of the vortex surfaces of the transitional pipe flow in
the early stage. In particular, we reveal the formation, growth, propa-
gation, and breakdown of streamwise helical vortex loops in the early
pipe transition. Some conclusions are drawn in Sec. IV.

II. SIMULATION OVERVIEW
A. DNS of the pipe transition

We carry out the DNS of the temporally evolving transition of
pipe flows by solving the three-dimensional incompressible
Navier–Stokes (NS) equations

@u
@t

þ u � ru ¼ �rpþ 1
Re

r2u; (1)

r � u ¼ 0; (2)

in cylindrical coordinates ðx; r; hÞ with the streamwise x-, radial r-,
and azimuthal h-directions, where u ¼ ðux; ur ; uhÞ and p denote
the non-dimensional velocity and pressure, respectively, and Re
¼ UbD=� ¼ 5000 denotes the Reynolds number with the bulk
streamwise velocity Ub¼ 1, the pipe diameter D¼ 2, and the kine-
matic viscosity � ¼ 4� 10�4.

The NS equations are solved in the computational domain X for a
round pipe with the length L ¼ 16p and radiusR¼ 1. The non-slip con-
dition is applied at the wall, and the periodic boundary condition is used
in the x-direction. The velocity u ¼ ðux; ur ; uhÞ is non-dimensionalized

byUb. The number of grid pointsNx,Nr, andNh in the three directions
and other DNS parameters are listed in Table I.

In order to trigger a relatively mild transition with a clear
evolution process of vortical structures, a three-dimensional, slowly
time-varying wave-like disturbance fluctuating in the h-direction with
azimuthal wavenumbers m¼ 4, 8, and 12 is imposed over a time
period from t¼ 0 to t ¼ p on the initial laminar Poiseuille flow near
the left inlet boundary at 0 � x � 2p as

ux ¼ 2Ub 1� r2

R2

� �
; ur ¼ �AðtÞ r

R
cosðmhÞ sin x

2

� �
; uh ¼ 0:

(3)

Here,

AðtÞ ¼ A0 1� cos ð8tÞ½ � 1� tanh
16
p

����t � p
2

����� p
4

 !" #( )
(4)

is the disturbance amplitude with A0 ¼ 8� 10�5. The effects of the
parameters m and A0 on the transition process are discussed in
Appendix A. In Fig. 1, the oscillation (solid line) of A(t) is enveloped
by a smoothed step function (dashed line) with the value 0 � AðtÞ
� 4A0 at 0 � t � p, mimicking a blowing and suction disturbance.41

This type of initial disturbance can trigger the varicose instability
mode42–47 in the early transition in cases V4, V8, and V12 in Table I.
In addition, the initial disturbance in case S8 is related to the sinuous
instability mode, which is discussed in Appendix A1. Under the dis-
turbance with the streamwise width 2p, the length of pipe 16p is long
enough to reveal the structural evolution during the early transition at

TABLE I. Summary and comparison of DNS parameters, where u0 denotes the initial velocity.

Case L/R Re u0 m Nx Nr Nh Drþ DðRhÞþ Dxþ

V4 16p 5000 Eq. (3) 4 1800 256 512 0.51, 0.74 2.06 4.69
V8 16p 5000 Eq. (3) 8 1800 256 512 0.51, 0.74 2.06 4.69
V12 16p 5000 Eq. (3) 12 1800 256 512 0.51, 0.74 2.06 4.69
S8 16p 5000 Eq. (A1) 8 1800 256 512 0.51, 0.74 2.06 4.69
Ref. 39 15 5300 � � � � � � 512 256 512 � � � 2.22 5.31
Ref. 40 30 24 580 � � � � � � 2048 256 1024 0.8, 1.2 4.2 10.03

FIG. 1. Velocity disturbance amplitude (black solid line) in Eq. (4) with its envelope
function (blue dashed line) in terms of time.
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0 � t � 15 before the strong interaction between the leading and trail-
ing edges of the growing disturbed region.

For the disturbance in Eq. (3), the initial components of the vor-
ticity x ¼ r� u are

xx ¼ �Am
R

sin
x
2

� �
sin ðmhÞ; xr ¼ 0;

xh ¼ 4rUb

R2
� Ar
2R

cos
x
2

� �
cosðmhÞ;

(5)

which imply that all vortex lines lie on concentric tubes parallel to the
wall. The vortex lines are integrated from Eq. (5) with m¼ 8 at r¼R
on the x–h surface in Fig. 2, where the artificially enlarged constant
A ¼ A0 � 104 is used in Eq. (4) for enhancing the visual effect of the
disturbance. All the initial vortex loops are attached on the x–h tube
surface, and they induce velocities in alternating plus and minus
r-directions via the Biot–Sarvart law.

In the implementation, all DNS cases are performed by the NGA
code.48 The NS equations are solved on a staggered grid in the cylin-
drical coordinates, and they are advanced in time by the second-order
semi-implicit Crank–Nicolson scheme with the time step Dt. The
pressure Poisson equation is solved to enforce continuity using a com-
bination of spectral, Krylov-based, and multi-grid methods. The
momentum equations are discretized with a second-order, centered,
kinetic-energy conservative finite difference scheme. Note that the
velocity disturbance in Eqs. (3) and (4) is added in each time step from
t¼ 0 to t ¼ p with the time interval Dt ¼ 10�3. The imposed distur-
bance with a negligible divergence, with the maximum local value on
the order of A0, is projected onto the divergence-free space by solving
the pressure Poisson equation in each time step.

In the spatial discretization, grid points are uniform in the
streamwise and azimuthal directions, and exponentially stretched grid
points

rj ¼
tanh bðj� 1Þ= Nr � 1ð Þ� �

tanhb
R; j ¼ 1; 2;…;Nr (6)

with b¼ 2 are used in the radial direction. Cases V4, V8, and V12 in
Table I with the same Re and different initial disturbances have transi-
tioned to fully developed turbulence. The spatial resolution is exam-
ined by grid convergence tests in Appendix B and resolution
quantifications in the fully developed turbulent state. The distance
y ¼ R� r from the wall is normalized by the viscous length scale
d� ¼ �=us as yþ ¼ y=d� , where the superscript “þ” refers to a quan-
tity normalized by us and us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
denotes the wall-friction

velocity, with the density q¼ 1 and the wall shear stress sw. In Table I,
our resolutions are slightly higher than those in typical pipe DNS stud-
ies,39,40 e.g., the wall-normal grid resolution Drþ � 0:51 at yþ � 30
and Drþ � 0:74 in the viscous wall region at yþ � 50.

B. VSF method for pipe flows

The VSF is a Lagrangian-based identification method of coherent
flow structures.36 The VSF /v, a globally smooth scalar field, is defined
to satisfy the constraint

x � r/v ¼ 0; (7)

which means every isosurface of /v is a vortex surface consisting of
vortex lines. The VSF evolution is calculated by the two-time
method,49 as a post-processing step based on a time series of velocity-
vorticity fields obtained by solving the NS equations. The numerical
implementation of the VSF calculation is the same as that detailed in
Refs. 25 and 49, except for the extension to cylindrical coordinates.

For the initial velocity in Eq. (3), an exact initial VSF field is
/v0 ¼ ð1� r=RÞ2, which satisfies the VSF boundary condition. The
isosurfaces of /v0 are concentric vortex tubes. As sketched in Fig. 3,
the initial VSF isosurface of /v ¼ 0:09 (blue solid line), corresponding
to the tube at r=R ¼ 0:7, is perturbed by the radial disturbance (red
dashed line) in Eq. (3).

Generally, the computed /v cannot be an exact VSF solution,
and the error is quantified by e/ ¼ hjkxji,49 where kx ¼ ðx � $/vÞ=
ðjxjj$/vjÞ is the cosine of the angle between the vorticity and the
VSF gradient and h�i denotes the volume average over X. The VSF

FIG. 2. Vortex lines integrated from Eq. (5) with A ¼ A0 � 104 and m¼ 8 on the
x–h plane (expanded from the tube surface) at r¼R.

FIG. 3. Sketch of the initial VSF isosurface (blue solid line) and the radial velocity
disturbance (red dashed line) in the r–h plane.
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calculation is applied to the early stage of the transition at 0 � t � 15,
and the error is very small as e/ < 4%.

III. RESULTS
A. Flow statistics

The volume-averaged wall-friction Reynolds number
Res ¼ husiR=� is calculated to monitor the transition process. In
Fig. 4, Res first surges from t¼ 0 to 5 in cases V4, V8, and V12, signal-
ing the incipient transition, and then it keeps growing with large fluc-
tuations. At later times, it reaches a statistical stationary stage around
Res ¼ 170 after t¼ 100 in the inset plot, indicating the fully developed
turbulent state. We will focus on case V8 with m¼ 8 in the early tran-
sition below, and other cases in Table I are discussed in Appendix A.

The severe deformation of vortex surfaces is associated with the
growth of the local friction coefficient Cf ¼ 2sw=ðqUb

2Þ, which is pro-
portional to Res. In Fig. 5, the peak of Cf rises from t¼ 0 to 6 and grad-
ually decays with time, and the region of large Cf migrates and
elongates along the x-direction. This intensified and growing distur-
bance region, which triggers the further transition to turbulence, is
also represented by the variation of the mean streamwise velocity.

In the early transition at t¼ 4, Fig. 6 shows that huxi begins to be dis-
turbed from the laminar velocity profile within the core region at
y=R > 0:5 and at the leading edge around x¼ 8. Within the distur-
bance region, the variation of huxi extends toward the wall region, and
the profile of huxi has a clear inflection point. The significant stream-
wise acceleration in the near-wall region around x¼ 4 causes the large
Cf in Fig. 5. This disturbance gradually weakens at the tailing edge
around x¼ 2.

The vorticity evolution is characterized by enstrophy components
Xx ¼ hx2

xi=2; Xr ¼ hx2
r i=2, and Xh ¼ hx2

hi=2. In case V8, enstro-
phy components grow rapidly from t¼ 2, and radial and azimuthal
components peak around t¼ 5; in case S8, the enstrophy growth is
much milder and decays soon. The variation of the enstrophy is closely
related to the geometry of vortex surfaces, which will be discussed in
detail below.

B. Deformation of wall-parallel vortex surfaces

The temporal evolution of the VSF isosurface of /v ¼ 0:09
color-coded by r/R in the pipe transition with m¼ 8 is shown in
Fig. 7. This isosurface corresponds to the initial one at r ¼ 0:7R near
the wall, as illustrated in Fig. 3. Note that the length scale in the
x-direction is artificially compressed by a factor of two in Fig. 7 and
the following VSF visualization figures for enhancing the visual effect
of radial deformation. Some vortex lines are integrated from points on
the isosurfaces, and they are faithfully attached on the surfaces with
the negligible VSF error ev.

At the early time t¼ 1, the VSF isosurface remains a smooth tube
with little disturbance in Fig. 7(a). Under the temporally and azimuth-
ally fluctuating radial disturbance (see Fig. 3), the vortex surface begins
to form bulges50,51 elongated in the x-direction in Fig. 7(b) at t¼ 2.
The number of bulges is equal tom in Eq. (3). Then, the bulges gradu-
ally evolve into a petal-like, corrugated structure with the increasing
height of the wavy part at t ¼ 3–4 in Figs. 7(c) and 7(d). The forma-
tion of the vortex bulge is consistent with the rapid growth of Xr at
t ¼ 2–4 in Fig. 8(b) and is modeled with the initial disturbance in
Appendix C.

FIG. 4. Temporal evolution of the wall-friction Reynolds number in various DNS
cases.

FIG. 5. Temporal evolution of the friction coefficient along the streamwise direction
in case V8.

FIG. 6. Mean normalized streamwise velocity profiles (lines) at different streamwise
locations at time t¼ 4 in case V8, along with the laminar Poiseuille profile ux
(circles) in Eq. (3).
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The geometric deformation of vortex surfaces is quantified by the
variation of the volume-averaged VSF gradient magnitude hjr/vji
�hjr/v0ji as Fig. 9 shows. For case V8, the deformation level of VSF
isosurfaces surges from t¼ 0 to 6, and then the growth slows down.
Around t¼ 11, the deformation rises again, which corresponds to the
occurrence of instability of the strong shear layer discussed in Sec.
IIID. For case S8, the deformation level grows mildly from t¼ 0 to 3
and then decays, because the disturbance of the streamwise velocity
streak cannot trigger the pipe flow transition, which is elaborated in
Appendix A2.

Furthermore, we characterize the elevation and descent of two
typical VSF isosurfaces.50 For a given VSF isosurface, the distance y to
the wall is calculated at a number of sample points on this surface. The
maximum and minimum operators max/v¼cð�Þ and min/v¼cð�Þ of y
over the whole isosurface of /v ¼ c are defined, respectively, with a
constant c. In Fig. 10, the maximum wall distance max/v¼0:09ðyÞ of the
VSF isosurface /v ¼ 0:09 initially in the wall region rises from 0.3 at
t¼ 0 to 0.57 at t¼ 3, and then it grows slowly to reach a stationary

state around 0.7 at t¼ 7. The maximum wall distance of the VSF iso-
surface /v ¼ 0:25 initially near the core region has the same trend.
Meanwhile, the minimum wall distance of these two typical VSF iso-
surfaces shows similar descent trends, i.e., falling first and then relax-
ing to the location very close to the wall. The continuous corrugated
deformation illustrated in Fig. 8 causes the vortex surfaces initially sep-
arated in near-wall and core regions to approach and even interlace
with each other, and they cover the radial range from 20% at t¼ 0 to
70% at t¼ 10.

As illustrated in Fig. 11, the elevation and descent of vortex surfa-
ces are accompanied by the strong momentum exchange50 and the
generation of streamwise vortex pairs. The streamwise vortex pairs
lift-up the near-wall low-speed fluid between them and sweep down
the high-speed fluid from the core region toward to the wall, generat-
ing streaks of low and high streamwise velocities.52 The low- and high-
speed streaks are alternately arranged in the h-direction at
h ¼ kp=m; k ¼ 0; 1;…, as implied by Eq. (C5) from the initial distur-
bance. The streak positions are the same as those of the raised and
sunken parts of the corrugated vortex tube. Each streamwise vortex
pair leads to the momentum exchange in the r-direction, causing the
growth of Cf and inflection points of huxi in the r-direction in Figs. 5
and 6. Moreover, the collapse of vortex surfaces within the region of
large xh in Fig. 12 indicates the generation of a strong shear layer as
the lifted-up low-speed streak meets the incoming high-speed laminar
flow upstream.

In Fig. 13, the petal-like corrugated structure propagates and
elongates in the streamwise direction at t ¼ 5–8, with the increasing

FIG. 7. VSF isosurfaces of /v ¼ 0:09 color-coded by r/R at (a) t¼ 1, (b) t¼ 2, (c)
t¼ 3, and (d) t¼ 4 in case V8. Some vortex lines are integrated from points on the
surfaces.

FIG. 8. Temporal evolution of enstrophy components (a) Xx, (b) Xr, and (c) Xh in cases V8 and S8.

FIG. 9. Temporal evolution of the VSF deformation in cases V8 and S8.
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length between the leading and trailing edges. In the meantime, the
bulge heads grow and converge to the pipe centerline, and then roll up
in the r–h plane. In Fig. 13(d) at time t¼ 8, the head at the leading edge
accelerates to form a sharp tip, which is similar to the formation of the
triangular bulge in transitional channel flows50 and boundary layers37

due to the larger y and ux in shear flows. In addition, the gradual transi-
tion with a clear process of vortex formation is similar to the pipe flow
transition with a weak turbulence disturbance near the inlet.20

C. Formation of streamwise helical vortex loops

The rolling up of vortex bulges in Fig. 13 is along with the genera-
tion of streamwise vortices. Next, we elucidate how the initial vortex
loops in the r–h plane with very small streamwise vorticity compo-
nents (xx � xh at t¼ 0) form streamwise helical vortex loops elon-
gated in the x-direction via a series of successive vortex reconnections.

The top view at t¼ 4 in Fig. 14(a) shows the streamwise stretch-
ing of vortex loops attached on a VSF isosurface due to the difference

of ux in the r-direction, which generates m streamwise vortex pairs
with moderate xx in Fig. 11. The rolling up of the vortex pairs form
highly coiled vortex loops attached on the corrugated vortex tube in
Fig. 14(b).

At t¼ 5, the highly coiling part on the leading edge of petal-like
vortex lines in Fig. 15(a) has self-reconnection with the viscous cancel-
ation mechanism21 at the neck of a petal-like vortex loop.
Subsequently, m secondary vortex loops, the red ones in Fig. 15(b),
pinch off. We remark that the self-reconnection, during the converg-
ing of petal-like vortex loops toward the pipe centerline, was not
observed in the transitions in channel flow25 and boundary layer,37

because this evolution under the azimuthal symmetry is distinguished
from those in the other two canonical wall-bounded flows.

Then at t¼ 5.02 in Fig. 16, the detached secondary vortex ring
(red) in Fig. 15(b) is captured and further reconnected with another
detached secondary vortex ring (blue) from a highly coiled vortex loop
upstream. This reconnection forms a streamwise elongated vortex
loop (red) in Fig. 16(b). In the subsequent evolution, the helical vortex
loops keep growing in the x-direction through stretching and
reconnection.

FIG. 11. Contour of ux, VSF isolines of /v ¼ 0:04 and 0.16 (black solid lines from
bottom to top), and isolines of xx ¼ �3 (blue dashed lines) and xx ¼ 3 (red
dashed lines) on the r–h plane at t¼ 4 and x¼ 2.82 in case V8.

FIG. 12. Contour of xh and VSF isolines of /v ¼ 0:04, 0.09, 0.16, and
0.25 (dashed lines from bottom to top) on the x–y plane at h¼ 0 and at t¼ 4 in
case V8.

FIG. 13. VSF isosurfaces of /v ¼ 0:09 color-coded by r/R at (a) t¼ 5, (b) t¼ 6,
(c) t¼ 7, and (d) t¼ 8 in case V8. Some vortex lines are integrated from points on
the surfaces.

FIG. 10. Temporal evolution of the wall distances of two typical VSF isosurfaces.
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Furthermore, at t¼ 5.04 in Fig. 17(a), the rear part of the leading
streamwise elongated vortex loop (red) can be reconnected with the
front part of the trailing coiled vortex loop (blue) shown in Fig. 14.
This type of reconnection also forms a long streamwise helical vortex
loop (red) and a new petal-like vortex loop (blue) in Fig. 17(b), and its
mechanism is sketched in Fig. 18 to illustrate a streamwise growing
mechanism of vortex loops. The successive reconnections (similar to
the greedy snake) shown in Figs. 15–17 make the streamwise helical
vortex loops growing rapidly in the x-direction.

The streamwise helical vortex loop in Fig. 17(b) spans from about
x¼ 4.5 to x¼ 10.5, almost throughout the disturbance region with
corrugated vortex surfaces in Fig. 13(a). Its wall distance spans from
y¼ 0.035 near the wall to y¼ 0.49 near the core region, attached on
the different vortex surfaces with a range of initial wall distances.
Thus, the streamwise length scale of the long helical vortex loops rises
from R at t¼ 5 in Fig. 15 to 6R at t¼ 5.04 in Fig. 17(b). The formation
of streamwise helical vortex loops around t¼ 5 is accompanied by the

notable growth of Xx in Fig. 8(a), i.e., the generation of streamwise
vortices.

The generation of the streamwise helical vortex loops continues to
form strong local vortex cores. At a later time t¼ 8, Fig. 19 depicts that
each streamwise helical loop coils around a pair of streamwise vortex
cores. The vortex cores identified by the Q criterion (red) are parts of
vortex surfaces identified by the VSF isosurface /v ¼ 0:35 (gray). Two
strands of each streamwise helical vortex loop have opposite chirality of
coiling. The streamwise vortex pairs alternately along the azimuthal
direction can be the optimal disturbance to achieve the maximum tran-
sient growth and promote the bypass transition of pipe flows.53–55

D. Elongation and breakdown of streamwise helical
vortex loops

The streamwise helical vortex loops elongate via successive
reconnections and move downstream. This process is characterized by

FIG. 14. (a) Top view and (b) perspective view of the VSF isosurface of /v ¼ 0:09 (translucent) and typical vortex lines (color-coded by x) integrated from points on the sur-
face at t¼ 4 in case V8.

FIG. 15. Self-reconnection of a highly stretched and coiled vortex loop at t¼ 5 in case V8; (a) before and (b) after reconnection. The reconnection locations are marked by
dashed circles. The vortex loops are integrated from points on the VSF isosurface of /v ¼ 0:35 (translucent).
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tracing the position of the leading and trailing edges of the streamwise
helical loops. As depicted in Fig. 20, we identify the streamwise helical
vortex structure by integrating a cluster of vortex lines on the VSF iso-
surfaces. The leading-edge position xLE and trailing-edge position xTE
are defined by the largest and smallest values of x, respectively, in the
cluster of vortex lines at a given time. The vortex loops containing xLE
and xTE are colored in red and blue in Fig. 20, respectively.

Figure 21 plots the temporal evolution of xLE and xTE and the
length xLE � xTE of streamwise helical loops, along with their linear

fits at 5 � t � 9. After the formation of helical vortex loops at t¼ 5,
both xLE and xTE move downstream. The leading edge moves faster
than the trailing edge, leading to the steady elongation of the stream-
wise vortical structures. The propagation speeds of ULE and UTE of
leading and trailing edges are estimated from the linear fits in Fig. 21.
The normalized results ULE=Ub ¼ 1:62 and UTE=Ub ¼ 0:58 show
that the leading edge moves faster and the trailing edge moves slower
than the mean flow, which is similar to the motion of slug structures
in the later stage of pipe transition.14

FIG. 16. Reconnection of two pinched-off secondary vortex loops at t¼ 5.02 in case V8; (a) before and (b) after reconnection. The reconnection locations are marked by
dashed circles. The vortex loops are integrated from points on the VSF isosurface of /v ¼ 0:35 (translucent).

FIG. 17. Reconnection of the streamwise helical loop and stretched and coiled vortex loops at t¼ 5.04 in case V8; (a) before and (b) after reconnection. The reconnection
locations are marked by dashed circles. The vortex loops are integrated from points on the VSF isosurface of /v ¼ 0:08 (translucent).
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Around t¼ 10, the growth of streamwise loops slows down, and
then, around t¼ 12, the streamwise loops begin to be shortened due to
the breakdown of the trailing edge caused by the Kelvin–Helmholtz
(KH) instability of shear layers. In Fig. 22, the petal-like deformation
and the generation of streamwise helical vortex loops introduce three-
dimensional characteristics to vortex surfaces, and small-scale wrin-
kled or helical structures emerge at t ¼ 9�12.

The arched part of the corrugated vortex surface in Fig. 13(d) at
t¼ 8 corresponds to a low-speed streak, and its trailing edge becomes
unstable at t¼ 10 in Fig. 22(a). From the side view in Fig. 23, the vortex
surfaces are rolled up via the KH instability of the strong shear layer,
which is characterized by large xh and formed by the elevation and
descent of vortex surfaces (also refer to Fig. 12). Then, small-scale turbu-
lent-like structures are produced at the trailing edge, and they propagate
downstream faster than the leading edge of the corrugated vortical
structure (see Fig. 21 after t¼ 12).56 The breakdown of the trailing edge
of the helical vortex loops also enhances Xx in Fig. 8(a) and VSF defor-
mation in Fig. 9, and triggers the varicose mode instability of streaks,
leading to the expansion and contraction of the vortical structures along
the x-direction and the emergence of turbulent spots.57,58

IV. CONCLUSIONS

We extend the VSF method to investigate the evolution of vortex
surfaces in temporally evolving transitional pipe flows. In particular,
we identify and characterize the vortex reconnection in the formation
of streamwise helical vortex loops in the early stage of the pipe transi-
tion. In the DNS of pipe flows, a slow time-varying, blow-and-suction
disturbance is imposed on laminar Poiseuille flow to trigger a relatively

FIG. 18. Schematics of the vortex reconnection in Fig. 17.

FIG. 19. Streamwise helical vortex loops integrated from points on the VSF isosur-
face of /v ¼ 0:35 (gray) and the isosurface of the Q-criterion (red) at t¼ 8 in case
V8.

FIG. 20. Top view of the propagation and elongation of a cluster of streamwise helical vortex loops at different times in case V8. Red and blue loops contain xLE and xTE,
respectively.

FIG. 21. Temporal evolution of xLE (triangles), xTE (squares), and xLE � xTE
(circles) of the cluster of streamwise helical loops along with their linear fits (solid
lines).
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mild transition with a clear evolution process of vortical structures.
The initial velocity field has an exact VSF solution whose isosurfaces
are wall-parallel concentric tubes consisting of sinuous vortex loops.
The VSF evolution is calculated by the two-time method.25,49

Under the initial disturbance of velocities in alternating plus and
minus r-directions in case V8, the vortex surfaces first become corrugated
with m streamwise elongated bulges at t ¼ 0–4. The escalation and
descent of vortex surfaces characterize high- and low-speed streaks and
streamwise vortex pairs, rolling up the closed vortex loops into highly
coiled ones. The deformation of vortex surfaces enhances momentum
exchange in the r-direction and causes the surge of the wall-friction coeffi-
cient. In particular, the difference of ux on the vortex surface stretches the
vortex loops in the x-direction, introducing strong three-dimensional
characteristics on the vortex loops initially lying on the r–h plane.

At t ¼ 5–8, the stretched coiled vortex loops reconnect with each
other at the head and tail with the viscous cancelation mechanism.
First, streamwise helical vortex loops spanning R in the x-direction are
generated at the tailing edge of the corrugated vortex surfaces. In the
meantime, the self-reconnection occurs at the head of the streamwise
helical vortex loops, and then small secondary vortex rings pinch off.
Then, the streamwise helical vortex loop reconnects with the second-
ary vortex ring to grow in the streamwise direction via successive vor-
tex reconnections. This greedy snake mechanism makes the helical
vortex loops growing rapidly. The long loops span 11R from the trail-
ing edge to the leading edge in the x-direction at t¼ 9.

The elevation of vortex surfaces also generates strong shear layers
at the trailing edge of the corrugated structure. Around t¼ 10, the KH

instability of the shear layer breaks down the trailing edge of the
streamwise helical vortex loops into small-scale structures, which fur-
ther triggers a varicose mode instability to form turbulent spots.

The generation of streamwise helical vortex loops via successive
reconnections can be found with various A0 andm in the initial distur-
bance in Eq. (3) and at a range of Re in Appendix A 1. On the other
hand, it is not found for the initial disturbance with imposed streaks in
Appendix A2. The lack of the generation of streamwise vortex loops
can inhibit the transition in case S8.

In future work, we will explore whether this successive reconnec-
tion mechanism exists in the later transition stage with more complex
initial disturbances. Furthermore, the VSF method can be applied to
study the self-sustained process59 and the relative equilibrium state of
traveling wave solutions60–63 in pipe flows.
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APPENDIX A: EFFECTS OF THE INITIAL CONDITION
ON VSF EVOLUTION

1. Azimuthal wavenumber in the initial disturbance
We vary the parameters of the initial wavy disturbance in Eqs.

(3) and (4) to study the influence of the initial disturbance on the

FIG. 22. VSF isosurfaces of /v ¼ 0:16 color-coded by r/R at (a) t¼ 10 and (b) t¼ 12 in case V8. Some vortex lines are integrated from points on the surfaces.

FIG. 23. Contour of xh and VSF isolines of /v ¼ 0:04, 0.09, 0.16, and
0.25 (dashed lines from bottom to top) on the x–y plane at h¼ 0 and at t¼ 10 in
case V8.
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transition process and the evolution of vortex surfaces. First, the num-
ber of bulges in the vortex surface deformation is equal to m in Fig. 24,
and the surge of Res occurs earlier and the growth is stronger for larger
m in Fig. 4. From the VSF isocontour lines with m¼ 4 (green dashed
line), 8 (red solid line), and 12 (blue dash-dotted line) on a cross section
at t¼ 5 in Fig. 25, the petal structures are closer to each other for larger
m. The approaching petal structures can have intensified vortex interac-
tions38 and cause strong growth of Cf at t � 5. On the other hand, the
heads of petals for m¼ 4 are closest in Fig. 25, which appears to trigger
the strongest vortex interaction and the growth of Res at the later time
period t ¼ 10�15 in Fig. 4. Moreover, the deformation of vortex surfa-
ces can be intensified by increasing A0 in Eq. (4).

Second, the formation of streamwise helical vortex loops as a
robust evolutionary feature is consistently observed for various m
and Re. The loops are narrower in the h-direction and shorter in
the x-direction for larger m (not shown). Besides the transition
cases, the loop formation is also observed at low Re¼ 2000, in
which the flow is relaminarized after a short transitional period.

2. Disturbance on the streamwise velocity component

The velocity disturbance in Eq. (3) for cases V4, V8, and V12
is imposed on the radial velocity, which produces the streamwise
vorticity. In case S8, the same disturbance is switched to the stream-
wise velocity as

ux ¼ 2Ub 1� r2

R2

� �
� AðtÞ r

R
cos ðmhÞ sin x

2

� �
; ur ¼ 0; uh ¼ 0

(A1)

with m¼ 8 and the same A(t) in Eq. (4). The form of Eq. (A1)
represents alternating low- and high-speed streaks of ux. More
DNS parameters are listed in Table I. The corresponding initial vor-
ticity is

xx ¼ 0; xr ¼ Am
R

sin
x
2

� �
sin ðmhÞ;

xh ¼ 4rUb

R2
þ A

R
sin

x
2

� �
cos ðmhÞ;

(A2)

which implies that all vortex lines form eight-petal loops in the r–h
plane.

From the inviscid vorticity equation with Eqs. (A1) and (A2)
at the initial time, the vortex lines are only stretched in the x-direc-
tion in case S8 instead of the r-direction in case V8. The lack of the
persistent stretching mechanism in Eq. (C4) causes much milder
growth of Xr in case S8 than that in case V8 in Fig. 8(b).

The evolution of VSF isosurfaces in Fig. 26 shows that the ini-
tially corrugated vortex surface under the disturbance in Eq. (A1)
does not persistently grow in the r-direction. The lack of a large
enough difference of ux on the corrugated structure does not trigger
the formation of streamwise helical vortex loops in Fig. 19, and Xx

in case S8 only has very weak growth and then quickly decays.
Thus, the transition in case S8 does not occur with negligible
growth of Res in Fig. 4. It is consistent that the VSF deformation for
case S8 is much weaker than that for case V8 in Fig. 9.

APPENDIX B: GRID CONVERGENCE TEST

The grid convergence of the DNS is examined by conducting
three simulations on different numbers of grid points ½Nx; Nr ; Nh�
¼ ½450; 64; 128�, (900, 128, 256), and (1800, 256, 512). Typical sta-
tistics, the wall-friction Reynolds number and the mean normalized
streamwise velocity, in the three simulations are compared in
Fig. 27. Both quantities converge for the gird ½Nx; Nr ; Nh�
¼ ½1800; 256; 512�, which is used in case V8 (see Table I).
Moreover, it is confirmed that the profile of huþx i in the fully

FIG. 24. The comparison of VSF isosurfaces at time t¼ 5 with (a) m¼ 4, (b) m¼ 8, and (c) m¼ 12 in cases V4, V8, and V12, respectively. The VSF isosurface of
/v ¼ 0:09 is color-coded by r/R. Some vortex lines are integrated from points on the surfaces.

FIG. 25. VSF isolines with m¼ 4 (green dashed line), m¼ 8 (red solid line), and
m¼ 12 (blue dash dot line) in cases V4, V8, and V12, respectively. The isolines
are on the r–h plane at x¼ 7.81 and at t¼ 5, along with r ¼ 0:7R (black dashed
line).
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developed turbulent state agrees well with the DNS result of Wu
and Moin39 (not shown).

APPENDIX C: MODELING OF INITIAL
VORTEX-SURFACE DEFORMATION

Substituting the initial velocity in Eq. (3) and the initial vortic-
ity in Eq. (5) into the vorticity equation Dx=Dt ¼ ðx � rÞu, where
the viscous term is neglected for high-Re flow, we obtain vorticity
component equations Dxx=Dt ¼ 0; Dxh=Dt ¼ 0, and

Dxr

Dt
¼ 4mArUb

R3
sinðmhÞ sin x

2

� �
(C1)

at the initial time. After a short time t ¼ DT , we approximate

xr ¼ 4mArUb

R3
sin ðmhÞ sin x

2

� �
DT (C2)

by integrating Eq. (C1) in a Lagrangian view, suggesting that the initial
concentric vortex loops mainly deform in the radial direction.

We assume xx and xh have little change from t¼ 0 to DT ,
and take x ¼ p, where the vortex surface has the maximum defor-
mation, and then obtain

xx ¼ 0; xr ¼ 4mAUb sin ðmhÞ
R3

rDT; xh ¼ 4Ub

R2
r: (C3)

At t ¼ DT , the geometry of VSF isosurfaces is determined by the
VSF constraint in Eq. (7). It is equivalent to solve the characteristic
equation dr=xr ¼ rdh=xh of the vorticity,

64 and its solution

rðh;DTÞ ¼ r0 exp �ADt
R

cos ðmhÞ
� 	

(C4)

estimates the radial position of a VSF isosurface with the initial
radial position at r0. This approximation suggests the rapid radial
deformation of vortex surfaces in the initial short time period. The
maximum radial deformation, indicating the location of streaks,
occurs at

h ¼ kp
m

; k ¼ 0; 1; 2;…: (C5)
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