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 A B S T R A C T

As scientific discovery becomes increasingly data-driven, integrating physics-based numerical methods with 
advanced machine learning (ML) techniques has brought new insight in the analysis of complex physical 
systems. This paper explores how this integrated approach overcomes the limitations of traditional first-
principle methods and brute-force ML techniques to achieve a more precise solution to complex physical 
problems. Specifically, we review networks that combine classical numerical schemes with neural networks 
applied to various physical systems. These integrated methods with residual structures effectively adhere to 
system symmetries and conservation laws. This integration outperforms conventional data-driven techniques 
in robustness and predictive capability, even with smaller datasets, owing to its improved ability to capture 
complex physical patterns.
1. Introduction

The integration of physics-based numerical methods with machine 
learning (ML) represents a promising approach to studying complex 
physical systems, particularly as data-driven methodologies play an 
increasingly prominent role in scientific discovery. This review dis-
cusses hybrid frameworks that combine numerical schemes with neural 
networks, aiming to address some limitations of first-principle methods 
and purely data-driven ML. By preserving symmetries and conservation 
laws, these methods show potential for delivering accurate and robust 
solutions, even with limited datasets.

The origins of these paradigms can be traced back to the foundations 
of scientific inquiry. Since Newton’s era, two main paradigms have 
guided scientific research: the Keplerian (data-driven) approach and 
the Newtonian (first-principle-based) approach [1]. The first-principle-
based approach, while fundamental and elegant, often faces practical 
limitations due to complex equations and high computational costs. 
In contrast, the data-driven approach has become highly effective, 
especially with advancements in statistical techniques and ML. This ap-
proach manages high-dimensional functions through statistical analysis 
of their structures. By integrating learning paradigms with simulation 
frameworks, these methods significantly enhance the modeling of or-
dinary differential equations (ODEs) and partial differential equations 
(PDEs).

∗ Corresponding author.
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Despite their broad applicability, data-driven methods such as black 
box neural networks face several challenges. These approaches often re-
quire large, well-clean datasets and depend on intricate structures that 
can be highly sensitive to variations in input [2,3]. Furthermore, brute-
force ML with tools like deep neural networks struggles with high-
dimensional input–output spaces, costly data acquisition, physically 
implausible results, and poor extrapolation robustness. These factors 
complicate the accurate prediction of long-term dynamical behaviors.

To address these challenges, integrating physical information with 
ML provides an effective approach for developing data-driven compu-
tational mechanics [4]. The key innovation lies in embedding physics-
based priors into learning algorithms, preserving the system’s physical 
structure. Hence, these models outperform state-of-the-art data-driven 
methods in accuracy, robustness, and capability, even with smaller 
datasets and shorter training periods. This approach also extends be-
yond physics. For instance,  Udriste et al. [5,6] employed optimization 
theory in dynamic modeling to explore controllability in nonholonomic 
macroeconomic systems and multitime optimal growth models. These 
approaches could be enhanced by physics-informed machine learn-
ing techniques to more effectively capture the underlying complex 
dynamics.

We highlight methods that integrate numerical schemes for ODEs 
and PDEs into data flows, aligning them with traditional dynamical 
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system approaches. Significant advancements include the development 
of residual networks (ResNet) [7] that combine neural networks with 
discrete Euler integrators for ODEs, and the introduction of Neural 
ODEs [8] that utilize continuous data flow mechanisms. This progres-
sion from ResNet to Neural ODEs represents a shift from discrete to 
continuous dynamics, enhancing the modeling of ODEs. By employing 
customized solving schemes, these neural network data flows can be 
tailored to specific physical and mechanical contexts. The neural net-
works discussed in this paper are built on these concepts, incorporating 
targeted modifications to improve expressive power for particular phys-
ical applications. We present representative work from solid mechanics, 
Hamiltonian mechanics, and fluid dynamics.

In solid mechanics, neural networks are used as surrogate models 
to replace complex physical models. For example, Ma et al. developed 
neural networks for surface contact collisions [9], and these networks 
have proven effective in modeling nonlinear materials [10,11]. Zhang 
et al. developed hierarchical deep-learning neural networks (HiDeNN) 
using FEM representations, where network weights and biases are 
dependent on node positions [12–14]. Huang et al. proposed a problem-
independent machine learning (PIML) technique to mitigate FEM’s 
computational cost in structural topology optimization, mapping shape 
functions to material densities within the extended multi-scale FEM 
(EMsFEM) framework [15,16].

Hamiltonian mechanics, expressed in symplectic spaces, extends 
beyond classical mechanics to continuous systems like electromag-
netic fields and fluids. Greydanus et al. introduced Hamiltonian neural 
networks (HNNs) to preserve Hamiltonian energy by modifying the 
loss function [17]. Building on this, methods such as SRNN [18] and 
SSINN [19] embed symplectic integrators into recurrent neural net-
works to solve separable Hamiltonian systems and address large-scale 
N-body problems [20,21]. Jin et al. developed SympNet for handling 
both separable and nonseparable Hamiltonian systems, though it faces 
scalability issues with high-dimensional problems [22]. Additionally, 
Hamiltonian-based neural networks have been adapted for broader 
applications: Toth et al. created the Hamiltonian generative network 
(HGN) for inferring dynamics from high-dimensional data [23], and 
Zhong et al. introduced symplectic ODE-Net (SymODEN) to incorporate 
external control in Hamiltonian systems [24].

In fluid mechanics, research is increasingly integrating physical 
priors into ML to ground neural networks in physical laws rather 
than relying solely on data [25–28]. Raissi et al. introduced physics-
informed neural networks (PINNs) to incorporate principles such as 
symmetry and conservation into the learning process [29,30]. PINNs 
have been shown to capture irregular PDE solutions without regular-
ization [31] and can model high-speed flows by integrating the Euler 
equations into the loss function [32]. Embedding PDE structures into 
neural networks aids in understanding complex fluid dynamics [33–
35], though challenges remain due to high dimensionality and limited 
data. For high Reynolds number flows, traditional turbulence models 
are still necessary, but data-driven approaches are advancing turbu-
lence prediction [36–39]. Bin et al. found that progressive ML models 
are compatible with traditional turbulence modeling [40].

To better illustrate the mathematical derivation, architecture, and 
effectiveness of this approach, we will examine five specific examples: 
data-driven numerical integration networks (DDNI) [41], symplectic 
Taylor neural networks (Taylor-nets) [42], nonseparable symplectic 
neural networks (NSSNNs) [43], Roe neural networks (RoeNet) [44], 
and the neural vortex method (NVM) [45]. Our analysis highlights 
two main advantages of integrating numerical schemes with neural 
networks:

1. Preserve symmetries: integrate classical numerical schemes 
and neural networks to maintain symmetries and conservation 
laws, ensuring more accurate and efficient solutions.

2. Enhance expressive power: use higher-order residual struc-
tures to model complex physical phenomena, such as sound 
waves and vortices, capturing intricate patterns more effectively.
2 
The outline of this paper is as follows. Section 2 covers ResNet and 
neural ODEs, illustrating their extension to complex physical systems 
for developing new data-driven numerical methods. Section 3 reviews 
fundamental principles of various mechanical systems. Section 4 de-
scribes the network design. Section 5 summarizes key implementa-
tion details and experimental findings. Finally, Section 6 discusses the 
numerical results, method limitations, and potential future research 
directions.

2. Residual networks and neural ordinary differential equations

In conventional deep neural networks, the output 𝒚 of a block is 
generally represented as: 
𝒚 =  (𝒙,𝜽), (1)

where 𝒙 denotes the input, 𝜽 refers to the parameters of the neural 
network, and  (𝒙,𝜽) represents the function learned by the block. 
This function typically includes components such as convolutional 
layers, activation functions, and batch normalization parameters, which 
encompass weights and biases.

Introduced by He et al. [7], ResNet employs residual learning 
to effectively train very deep networks and address the challenges 
associated with deep architectures. The key concept of ResNet is to 
focus on learning the residual function rather than the entire mapping. 
Specifically, the network is designed to learn: 
𝒚 =  (𝒙,𝜽) + 𝒙. (2)

In contrast to the standard approach represented by (1), the formula-
tion in (2) includes a shortcut connection 𝒙 that directly links the input 
to the output.

ResNet represents a notable advancement in deep neural network 
architecture by incorporating residual connections to aid in the learning 
of complex functions. This design improves training efficiency and 
performance, particularly for very deep networks, thereby facilitating 
the effective training of models with hundreds or even thousands of 
layers and addressing the degradation problem associated with deep 
architectures. ResNet has achieved state-of-the-art results in various 
tasks, including image classification and object detection.

Neural ODEs [8] extend the principles of residual learning to con-
tinuous dynamics by modeling data transformations as a continuous 
process governed by an ODE. Specifically, the evolution of the hidden 
state 𝒉(𝑡) over time 𝑡 is described by: 
d𝒉(𝑡)
d𝑡 =  (𝒉, 𝑡,𝜽), (3)

where  is a neural network that specifies the rate of change, and 𝜽
denotes its parameters. This approach offers a flexible and memory-
efficient alternative to traditional discrete deep networks.

The concepts underlying Neural ODEs offer several opportunities for 
further development. One potential avenue is improving time integra-
tion solvers by utilizing symplectic integrators rather than conventional 
Euler or RK methods. Additionally, integrating graph neural networks 
(GNNs) could enhance the modeling of nonlinear interactions between 
computational units, which would support the Lagrangian description 
of multi-body systems. Finally, the application of spatial differential 
operators could provide a framework for describing the spatiotemporal 
evolution of continuous media governed by PDEs.

Neural ODEs can be extended to the following generalized form: 
𝜕𝒉(𝒙, 𝑡)

𝜕𝑡
=  (𝒉,𝒙, 𝑡,𝜽). (4)

The network also takes additional inputs 𝒙, such as spatial coordinates, 
external responses, and the coupling of multiphysics fields. Addition-
ally, the process of solving Eq. (4) can be customized using specific 
numerical schemes. By extending the dynamic formulation in (4) and 
applying specialized solving techniques – such as symplectic schemes, 
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Fig. 1. Methods from ResNet to Neural ODEs to our customized networks for ODE modeling from discrete to continuous to customized dynamics.
Table 1
Overview of mathematical background and numerical solvers.
 Dynamics systems Physical priors Solvers  
 Flexible multibody systems Floating reference frame Runge–Kutta integrator  
 Hamiltonian systems Symplectic structure Symplectic integrator  
 Hyperbolic PDEs Hyperbolic conservation law Roe solver  
 Incompressible flows Helmholtz’s theorem Lagrangian vortex method 
vorticity-preserving schemes, and shock-capturing methods – the data 
flow can be enhanced with specific structural properties.

Fig.  1 illustrates the central theme of our review. The transition from 
ResNet to Neural ODEs highlights a shift from discrete to continuous 
dynamics, which enhances the modeling of ODEs. This approach, along 
with the application of tailored solving schemes, illustrates how neural 
network data flows can be adapted to physical and mechanical contexts.

3. Dynamics equations

We illustrate the integration of mathematical principles derived 
from physical problems into numerical schemes through a series of 
examples. Specifically, the numerical algorithms for the relevant dy-
namical systems are provided in Appendix. This demonstration high-
lights how incorporating such mathematical priors can enhance the 
effectiveness and accuracy of numerical solutions. Table  1 provides 
a summary of the mathematical foundations and numerical solvers 
discussed in this section, providing an overview of the key concepts 
and methodologies employed.

3.1. Rigid–flexible coupling dynamics

We use a floating reference frame to analyze the motion of flexible 
structures [46–48] and model the rigid–flexible coupling dynamics in 
flexible multibody systems as follows: 
𝑴𝑿̈ +𝑲𝑿 + 𝑪T

𝑿𝜼 = 𝑸𝑙 −𝑸𝑣, (5)

where 𝑪(𝑿, 𝑡) = 𝟎 represents the kinematic constraint and (𝑿0, 𝑿̇0)
specifies the initial conditions, 𝑿̇ and 𝑿̈ denote the first and second 
time derivatives of 𝑿, respectively. The matrix 𝑪𝑿 is the Jacobian of 
the constraint function 𝑪(𝑿, 𝑡), 𝑲 is the stiffness matrix, and 𝜼 is the 
Lagrange multiplier. The mass matrix 𝑴 and load vectors 𝑸𝑙 and 𝑸𝑣

are computed as follows:

𝑴 = ∫𝛺
𝜌𝑳T(𝑿)𝑳(𝑿)d𝛺, 𝑸𝑙 = ∫𝛺

𝜌𝑳(𝑿)T𝒃d𝛺,

𝑸𝑣 = 𝜌𝑳T(𝑿)𝒂(𝑿, 𝑿̇)d𝛺,
(6)
∫𝛺

3 
 where 𝜌 represents the material density, 𝛺 defines the spatial domain 
of the structure, 𝑳 characterizes the kinematic properties, 𝒃 corresponds 
to the body forces, and 𝒂 accounts for the Coriolis and centripetal 
forces.

3.2. Hamiltonian dynamics

A Hamiltonian system is characterized by 𝑁 pairs of canonical 
coordinates, which consist of generalized positions 𝒒 and generalized 
momenta 𝒑. The dynamics of these coordinates over time are governed 
by Hamilton’s equations: 
d𝒒
d𝑡 = 𝜕

𝜕𝒑
,
d𝒑
d𝑡 = − 𝜕

𝜕𝒒
. (7)

Here, 𝒒 = (𝑞1, 𝑞2,… , 𝑞𝑁 ) represents the generalized positions, 𝒑 =
(𝑝1, 𝑝2,… , 𝑝𝑁 ) denotes the generalized momenta, and (𝒒,𝒑) is the 
Hamiltonian function.

3.3. Hyperbolic conservation laws

In fluid mechanics, conservation laws such as those for mass, mo-
mentum, and energy are described by first-order quasilinear hyperbolic 
PDEs: 
𝜕𝒖
𝜕𝑡

+
𝜕𝑭 (𝒖)
𝜕𝒙

= 𝟎, (8)

along with appropriate initial and boundary conditions. Here, 𝒖 is an 
𝑁𝑐 -component vector representing the conserved quantities, 𝑡 ∈ [𝑡0, 𝑡1]
denotes time, 𝒙 refers to the spatial coordinates within the domain 𝛺, 
and 𝑭  is the 𝑁𝑐 -component flux function.

3.4. Vortex dynamics

For an incompressible fluid, the Navier–Stokes (NS) equations can 
be rewritten in terms of the vorticity field 𝝎 = 𝛁 × 𝒖 as [49] 
D𝝎 = (𝝎 ⋅ 𝛁)𝒖 + 𝜈𝛁2𝝎 + 𝛁 × 𝒇 , ∇2𝜳 = −𝝎, (9)
D𝑡
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Fig. 2. Schematic diagrams of the integration of numerical schemes with neural networks for solving and predicting dynamic problems.
where 𝒇 is the body force and 𝜳  is a vector potential such that 𝒖 =
𝛁 × 𝜳 . This formulation highlights the vorticity dynamics and, in the 
inviscid limit (𝜈 = 0), describes the motion of vortex lines and surfaces, 
as outlined by Helmholtz’s theorems [50–52].

4. Neural networks based on numerical schemes

We illustrate the development of neural networks that incorporate 
numerical schemes. Through various examples, we demonstrate how 
integrating numerical methods with neural networks can enhance their 
capability to solve and predict complex dynamic problems. Fig.  2 
depicts this integration, showcasing how numerical schemes are em-
bedded within neural network architectures to effectively handle and 
predict dynamic behaviors.

4.1. Data-driven numerical integration networks

For flexible structures, the time integration of (A.2) involves finite 
element discretization and Gaussian numerical integration (GNI), both 
of which are computationally intensive. The DDNI method [41] uses 
deep neural networks with generalized coordinates 𝑿 and velocities 𝑿̇
to update dynamic quantities via the relations in (6), 
𝑴𝜽1 (𝑿) → 𝑴 ,𝑸𝑙

𝜽2
(𝑿) → 𝑸𝑙 ,𝑸𝑣

𝜽3
(𝑿, 𝑿̇) → 𝑸𝑣, (10)

 where the parameters (𝜽1,𝜽2,𝜽3) are optimized by minimizing the 
prediction error between DDNI and GNI. DDNI reduces computational 
complexity by exploiting mass matrix symmetry and mapping physical 
degrees of freedom (DOFs) to modal space, thereby simplifying the neu-
ral network and facilitating the storage of time-independent quantities, 
such as the stiffness matrix 𝑲.

Given the load, initial conditions, and constraints, RK4 is used 
for time integration. Dynamic quantities 𝑴 , 𝑸𝑙, and 𝑸𝑣 are directly 
predicted from state variables 𝑿 and 𝑿̇ at each time step, advancing 
the dynamics without traversing numerous elements, thus significantly 
enhancing efficiency.

4.2. Symplectic neural networks

Symplectic Taylor neural networks. In the separable Hamiltonian prob-
lem governed by (A.6),  Taylor-nets [42] predict system evolution using 
generalized coordinates 𝒒 and momenta 𝒑 as state variables. These 
4 
networks learn the gradients of the Hamiltonian with respect to these 
coordinates via symmetric networks 𝑻 𝑝 and 𝑽 𝑞 : 

𝑻 𝑝(𝒑,𝜽𝑝) →
𝜕𝑇 (𝒑)
𝜕𝒑

, 𝑽 𝑞(𝒒,𝜽𝑞) →
𝜕𝑉 (𝒒)
𝜕𝒒

, (11)

where (𝜽𝑝,𝜽𝑞) are parameters trained to model the right-hand side of 
(A.6). Taylor-nets utilize symmetric nonlinear terms similar to those in 
a Taylor polynomial, combined linearly. These networks, 𝑻 𝑝(𝒑,𝜽𝑝) and 
𝑽 𝑞(𝒒,𝜽𝑞), are defined as: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑻 𝑝(𝒑,𝜽𝑝) =
𝑀
∑

𝑖=1
(𝑨𝑇

𝑖 ◦𝑓𝑖◦𝑨𝑖 − 𝑩𝑇
𝑖 ◦𝑓𝑖◦𝑩𝑖)◦𝒑 + 𝒃,

𝑽 𝑞(𝒒,𝜽𝑞) =
𝑀
∑

𝑖=1
(𝑪𝑇

𝑖 ◦𝑓𝑖◦𝑪 𝑖 −𝑫𝑇
𝑖 ◦𝑓𝑖◦𝑫𝑖)◦𝒒 + 𝒅,

(12)

where ‘◦’ denotes function composition, 𝑨𝑖 and 𝑩𝑖 are fully connected 
layers of size 𝑁ℎ × 𝑁 , 𝒃 is a bias vector of dimension 𝑁 , and 𝑀 is 
the number of terms in the Taylor series. 𝑻 𝑝(𝒑,𝜽𝑝) takes 𝒑 as input 
with parameters 𝜽𝑝 = (𝑨𝑖,𝑩𝑖, 𝒃). Each negative term 𝑩𝑇

𝑖 ◦𝑓𝑖◦𝑩𝑖 com-
plements a positive term 𝑨𝑇

𝑖 ◦𝑓𝑖◦𝑨𝑖, allowing representation of any 
symmetric matrix. The function 𝑓𝑖 represents the 𝑖th order term in 
the Taylor series, defined as 𝑓𝑖(𝑥) = 𝑥𝑖∕𝑖!. 𝑽 𝑞(𝒒,𝜽𝑞) follows a similar 
structure. During training, these networks minimize the loss between 
their separable symplectic integration and the ground truth.
Nonseparable symplectic neural networks. NSSNNs [43] are extended 
to nonseparable Hamiltonian mechanics for the prediction of sys-
tem evolution. They learn dynamics through an augmented system 
(A.8), enabling extraction of the energy function (𝒒,𝒑) via neu-
ral network 𝜃(𝒒,𝒑) trained with parameters 𝜽 and computation of 
its gradient 𝛁𝜃(𝒒,𝒑). The input layer of the integrator starts with 
(𝒒,𝒑,𝒙, 𝒚) = (𝒒0,𝒑0, 𝒒0,𝒑0) at 𝑡 = 𝑡0, and the output layer is (𝒒,𝒑,𝒙, 𝒚) =
(𝒒𝑛,𝒑𝑛,𝒙𝑛, 𝒚𝑛) at 𝑡 = 𝑡0 + 𝑛d𝑡. Furthermore, since 𝒙 and 𝒚 theoretically 
represent 𝒒 and 𝒑 in (A.12), the dataset can be constructed with 
variables (𝒒,𝒑,𝒙, 𝒚) derived from (𝒒,𝒑). The network 𝜃 ensures that 
𝝓𝛿
1, 𝝓𝛿

2, and 𝝓𝛿
3 in (A.12) maintain the system’s symplectic structure. 

This property guarantees that constructing the network preserves the 
Hamiltonian flow’s symplecticity.

4.3. Roe neural networks

RoeNet [44] learns the weak solution of (8) without a prescribed 
𝑭 , using a neural network based on the Roe solver. It takes 𝒖 as input 
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state, predict matrices 𝑳𝜃 → 𝑳 and 𝜦𝜙 → 𝜦, and facilitate the Roe 
solver. Substituting 𝑳𝜃 and 𝜦𝜙 into (A.17) and (A.18) yields 

𝒖𝑛+1𝑗 =𝒖𝑛𝑗 −
1
2
𝜆𝑟(𝑳𝑛

𝑗+ 1
2 ,𝜃

)+(𝜦𝑛
𝑗+ 1

2 ,𝜙
− |𝜦𝑛

𝑗+ 1
2 ,𝜙

|)𝑳𝑛
𝑗+ 1

2 ,𝜃
(𝒖𝑛𝑗+1 − 𝒖𝑛𝑗 )

− 1
2
𝜆𝑟(𝑳𝑛

𝑗− 1
2 ,𝜃

)+(𝜦𝑛
𝑗− 1

2 ,𝜙
+ |𝜦𝑛

𝑗− 1
2 ,𝜙

|)𝑳𝑛
𝑗− 1

2 ,𝜃
(𝒖𝑛𝑗 − 𝒖𝑛𝑗−1),

(13)

with 
𝑳𝑛
𝑗+ 1

2 ,𝜃
= 𝑳𝜃(𝒖𝑛𝑗 , 𝒖

𝑛
𝑗+1), 𝜦𝑛

𝑗+ 1
2 ,𝜙

= 𝜦𝜙(𝒖𝑛𝑗 , 𝒖
𝑛
𝑗+1). (14)

In RoeNet, Eq. (13) governs the evolution of the system’s states from 
𝒖𝑛𝑗  to 𝒖𝑛+1𝑗 . In practice, 𝑳𝜃 and 𝜦𝜙 utilize ResBlocks [7], ending with 
linear layers sized 𝑁ℎ×𝑁𝑐 and 𝑁ℎ, respectively. 𝜦𝜙’s parameters create 
a diagonal matrix with 𝑁ℎ entries. RoeNet efficiently predicts solutions 
for hyperbolic conservation laws, even with discontinuous behavior, 
using limited discontinuity information from short training windows.

4.4. Neural vortex method

The NVM [45] employs Eulerian representations of the flow field 
to reconstruct the underlying fluid dynamics using neural networks. 
Integration of two networks with a vorticity-to-velocity Poisson solver 
enables high-resolution extraction of Eulerian flow from Lagrangian 
inductive priors. This approach addresses the difficulty of directly 
interpreting velocity and pressure fields from high-dimensional obser-
vations such as images. The detection network takes a vorticity field 
as input, which is then split into two branches. One branch predicts 
the probability of vortex presence using convolution, while the other 
locates the exact positions of vortices. During training, the network 
penalizes incorrect position detections only when it fails to detect a 
vortex in cells as per the ground truth from DNS. This approach mirrors 
real-time object detection methodologies discussed in Redmon et al. 
(2016) [53]. Additionally, the focal loss [54] is applied to mitigate 
issues related to imbalanced classification.

To predict vortex dynamics, two GNNs [21], 𝑨(𝜽1) and 𝑨(𝜽2), are 
employed. 𝑨(𝜽1) models induced velocities between vortices based on 
their positions and vorticity detected by the detection network. The 
output vector from 𝑨(𝜽1) characterizes the induced velocity of each 
vortex element 𝑗 (where 𝑗 ≠ 𝑖) on vortex 𝑖. This approach sums up 
all induced velocities on vortex 𝑖 to compute the total induced velocity 
from other vortices. On the other hand, 𝑨(𝜽2) predicts external force 
influences based on local vorticity and vortex positions.

5. Numerical results

In this section, we present the applications and impacts of advanced 
network architectures in computational mechanics, illustrated through 
several detailed cases. Our focus includes examining the effectiveness 
and efficiency of these novel approaches in solving complex problems.

For a more comprehensive understanding of the methodologies and 
outcomes discussed, please refer to the detailed studies and examples 
provided in the works of Tang et al. [41], Tong et al. [42], Xiong et al. 
[43], Tong et al. [44], and Xiong et al. [45]. These references offer 
in-depth analyses and additional context regarding the implementation 
and results of the discussed network architectures.

5.1. Data-driven numerical integration networks

We present a case study of a two-dimensional rotating beam ana-
lyzed with DDNI under harmonic, piecewise linear, and constant loads. 
Fig.  3 shows the beam’s dynamic responses.  Validation suggests several 
advantages of DDNI: it is approximately 15 times faster than GNI 
and demonstrates computational efficiency comparable to commercial 
software, even when accounting for training time [41]; it requires 
only a single training session and performs reliably across a range 
of operating conditions; and it achieves high accuracy with minimal 
trade-offs, as illustrated in Fig.  3(f).
5 
5.2. Symplectic Taylor neural networks

We examine three Hamiltonian systems: Pendulum with 𝐻(𝑝, 𝑞) =
𝑝2∕2 − cos 𝑞, Lotka–Volterra with 𝐻(𝑝, 𝑞) = 𝑝− 𝑒𝑝 + 2𝑞 − 𝑒𝑞 , and Hénon–
Heiles with 𝐻(𝑝, 𝑞) = (𝑝21 +𝑝22)∕2+ (𝑞21 + 𝑞22 )∕2+ (𝑞21𝑞2 − 𝑞32∕3). We use the 
Taylor-net to model and predict system behavior, comparing its perfor-
mance to that of Neural ODE, as shown in Fig.  4. For each Hamiltonian 
system, we generate random initial conditions and perform short-term 
simulations with 𝛥𝑡 = 0.01 using symplectic integration for training. 
The model then predicts the long-term behavior based on these initial 
conditions, demonstrating Taylor-net’s robust predictive capability over 
extended timeframes. On the other hand, the Neural ODE relies on 
a basic Euler method for integration and does not incorporate the 
symplectic structure or domain-specific priors. As a result, the Neural 
ODE fails to preserve the system’s inherent structure, causing errors to 
accumulate over time. This highlights the importance of incorporating 
structural information to prevent error growth and maintain accuracy 
in long-term predictions.

To evaluate the accuracy of the methods, we define the following 
error metric: 

Error =

√

√

√

√

𝑁𝑡
∑

𝑖=1

[

(𝑝P𝑖 − 𝑝G𝑖 )2 + (𝑞P𝑖 − 𝑞G𝑖 )2
]

, (15)

where 𝑁𝑡 denotes the total number of time steps for which predictions 
are made, and the superscripts P and G indicate the predicted values 
and the ground truth, respectively. This metric quantifies the overall 
discrepancy between the predicted and actual values, accounting for 
deviations in both 𝑝- and 𝑞-components over time.

As shown in Fig.  4, the Taylor-net model exhibits significantly 
higher accuracy, with prediction errors of 0.2298, 0.2652, and 0.5800 
across the three systems. In contrast, the Neural ODE model performs 
poorly, with much larger errors of 13.7000, 39.8828, and 41.4106. 
These results underscore the limitations of the Neural ODE model in 
accurately capturing system dynamics.

The lower errors achieved by the Taylor-net model underscore its 
effectiveness in modeling complex temporal behaviors. Meanwhile, the 
Neural ODE model’s high error rates suggest limitations in its ability 
to generalize, indicating that further refinement of its architecture or 
training process may be necessary.

5.3. Nonseparable symplectic neural networks

We showcase the superior performance of NSSNN by predicting the 
system  = 0.5(𝑞2 + 1)(𝑝2 + 1) [55] over the interval 𝑡 = 0 to 𝑡 =
20000 with initial conditions (𝑞0, 𝑝0) = (0,−3). The training data spans 
only [0, 0.2]. Fig.  5 compares predictions from various neural networks, 
all trained under identical conditions, to the ground truth. Neural 
ODEs exhibit larger errors due to their lack of embedded symplectic 
structure. While the other two networks, which focus on learning the 
Hamiltonian, achieve faster learning, HNN’s stability is lower compared 
to NSSNN. NSSNN, with its nonseparable symplectic integrator, excels 
in long-term predictions. Similarly, the errors associated with the three 
methods – Neural ODE, HNN, and NSSNN – are computed using (15). 
The resulting values are 81.6601, 29.3517, and 6.7406, respectively.

In Fig.  6, we use the trained model to predict the dynamics of three 
aligned 2D vortices, where the evolution of the vortices is driven by 
the interaction of 6400 particles with vorticity. The results from NSSNN 
and HNN are compared with the ground truth [43]. The initial vorticity 
conditions are based on [56]. The key challenge is keeping the vortices 
separate rather than merging into larger structures. NSSNN preserves 
the separation of vortices as shown in the ground truth, whereas HNN 
leads to vortex merging. We remark that NSSNN is distinguished by 
several notable features. While HNN enforces the conservative prop-
erties of a Hamiltonian system through its loss function, it relies on 
temporal derivatives of momentum and position, which are challenging 
to obtain, and does not fully preserve the symplectic structure. In 
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Fig. 3. (a)–(c) rotation angle and (d)–(f) angular velocity correspond to dynamic response results: simple harmonic, piecewise linear, and constant loads, respectively [41].
Fig. 4. The prediction for the dynamics of three Hamiltonian systems using Taylor-net: (a) Pendulum for 𝑡 = 4𝜋, (b) Lotka–Volterra for 𝑡 = 4𝜋, and (c) Hénon–Heiles for 𝑡 = 10. 
Results are compared with those from the Neural ODE, which uses a simple Euler method without symplectic structure or domain-specific priors, causing error accumulation over 
time.
Fig. 5. Comparison of prediction results for the Lotka–Volterra system: (a) Neural ODE, (b) HNN, (c) NSSNN.
contrast, the Neural ODE-based NSSNN overcomes these limitations 
by incorporating an integrator into the network and embedding the 
Hamiltonian prior to predict continuous system trajectories, showing 
strong potential for a wide range of applications.

5.4. Roe neural networks

We first demonstrate RoeNet’s ability to predict first-order linear 
hyperbolic PDEs of the form (8) with 𝑭 (𝒖) = 𝑨𝒖, where 𝑨 is a 
6 
constant 𝑁𝑐×𝑁𝑐 matrix. Fig.  7 shows the prediction results for a single-
component linear hyperbolic PDE with 𝑭 = 𝑥 and initial condition 
𝑢(𝑡 = 0, 𝑥) = 𝑒−300𝑥2 . In Fig.  7(a), we compare the predictions of RoeNet, 
RoeNet with noisy training data, and the Roe solver against the exact 
solution at 𝑡 = 0.3. RoeNet outperforms the numerical Roe solver, even 
with noise 𝜖 ∼  (0, 0.1). At larger 𝑡, RoeNet’s predictions remain accu-
rate with or without noise, while the Roe solver’s performance worsens, 
as shown in Fig.  7(b). Additionally, we evaluate the temporal evolution 
of computational errors for the RoeNet in comparison with traditional 
methods. Fig.  7(c) shows the average deviation 𝜆 =

⟨

|𝑢P − 𝑢G|
⟩ of 
𝑢
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Fig. 6. Visualization of three aligned 2D vortices, where the vortex evolution is driven by the interaction of 6400 particles with vorticity. Results from NSSNN and HNN are 
compared with the ground truth.
Fig. 7. Comparison of RoeNet and Roe solver for a one-component linear hyperbolic PDE: (a) 𝑡 = 0.3, (b) 𝑡 = 1.3, and (c) average deviation 𝜆𝑢 =
⟨

|𝑢P − 𝑢G|
⟩

. ‘‘RoeNet (noise)’’ 
indicates RoeNet with training noise 𝜖 ∼  (0, 0.1).
the predicted solutions from the exact solution. RoeNet’s deviation, 
indicated by the red circle line, is almost negligible, demonstrating its 
high accuracy. Even with noise, RoeNet’s prediction error is more than 
ten times smaller than that of the numerical Roe solver, highlighting 
RoeNet’s robustness.

We also apply RoeNet to solve a three-component linear hyperbolic 
PDE (8) with 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑭 =

⎡

⎢

⎢

⎢

⎣

0.3237 2.705 5.4101
0.3597 −0.4388 −2.8777
−0.0144 0.0576 1.1151

⎤

⎥

⎥

⎥

⎦

𝒙,

𝒖(𝑡 = 0, 𝑥 ≤ 0) = (0.4, 0.4, 0.4), 𝒖(𝑡 = 0, 𝑥 > 0) = (−0.4,−0.4,−0.4).

(16)

Fig.  8 shows the exact solutions and the predicted results for the 
three components 𝑢(1), 𝑢(2), and 𝑢(3) of a Riemann problem with a 
linear flux function. The predictions by RoeNet match the exact solu-
tions perfectly, while the Roe solver shows obvious errors around the 
discontinuities at 𝑥 ≈ ±0.3.
7 
We show that RoeNet can predict long-term discontinuities of the 
inviscid Burgers’ equation using only a short window of continuous 
training data. This equation, given by (8) with 𝐹 = 1

2 𝑢
2 and 𝑢(𝑡 =

0, 𝑥) = 1
2 + sin(2𝜋𝑥), is a fundamental PDE in multiple fields and can 

develop shock waves. In the absence of an analytical solution, Fig.  9 
compares RoeNet’s predictions with those of the Roe solver at 𝑡 = 0, 
𝑡 = 0.15, and 𝑡 = 0.3. The perfect match between RoeNet and the Roe 
solver demonstrates RoeNet’s ability to predict future discontinuities 
from limited data, marking a significant breakthrough in predictive 
capabilities.

We remark that current neural network-based methods typically 
solve PDEs using datasets or predict continuous solutions. PINNs re-
quire knowledge of the governing PDE and periodic feedback, of-
ten relying on Hessian-based optimizers, which can increase training 
time  [4]. In contrast, RoeNet only requires training data and employs 
gradient-based optimizers, leading to reduced computational costs and 
enhanced efficiency  [44]. While conventional networks may struggle 
with predicting discontinuous solutions without a governing equation, 
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Fig. 8. Riemann problem with three components and a linear flux function. (a), (b), and (c) show the predictions by RoeNet and Roe solver, along with the exact solutions for 
the components 𝑢(1), 𝑢(2), and 𝑢(3), respectively.
Fig. 9. Inviscid Burgers’ equation with 𝑢(𝑡 = 0, 𝑥) = 0.5 + sin(2𝜋𝑥) at (a) 𝑡 = 0, (b) 𝑡 = 0.15, and (c) 𝑡 = 0.3.
RoeNet shows improved performance in tasks where traditional meth-
ods encounter difficulties, especially for larger time values not included 
in the training data.

5.5. Neural vortex method

Figure 5 of [45] assesses the predictive capabilities of the NVM 
for the NS equations within a periodic domain, highlighting its ef-
fectiveness in capturing fluid dynamics in comparison to traditional 
LVM. The analysis focuses on two vortex particles, characterized by 
their predetermined initial positions and strengths. The results indicate 
that NVM’s predictions align closely with those from DNS, whereas 
LVM exhibits significant errors in predicting vortex positions. Further-
more, NVM maintains a lower relative error over longer prediction 
intervals, highlighting its superior accuracy and reliability compared 
to traditional methods.

NVM also effectively predicts complex turbulence systems, as il-
lustrated in Fig.  10, which shows two-dimensional Lagrangian scalar 
fields at 𝑡 = 1 with initial condition 𝜙 = 𝑥 and resolution 20002. The 
fields evolve with 𝑂(10) and 𝑂(100) NVM vortex particles, each with 
random positions ∼ 𝑈 (0, 4) and strengths ∼ 𝑈 (0, 2) at the initial time, 
using the same trained model. By applying backward-particle-tracking 
to the NVM particle velocity fields, we solve the scalar field evolution 
equation and extract material structures. Fig.  10(a) shows clear spiral 
structures with fewer particles, while Fig.  10(b) displays turbulence 
with many particles.  NVM demonstrates its potential to model complex 
turbulence with notable detail and efficiency, running on relatively 
modest hardware. For example, it was tested on a laptop with an Intel 
Core i7-9750H processor at 2.60 GHz, 16 GB of RAM, and an NVIDIA 
GeForce RTX 2060 GPU with 16 GB memory. This suggests that NVM 
can achieve reasonable accuracy without the need for advanced or 
specialized computing resources, making it a practical and accessible 
tool for turbulence modeling [45].

6. Conclusion

This manuscript offers a review of recent research where data-
driven methods and computational mechanics intersect. It explores 
8 
how combining physics-informed numerical schemes with advanced 
neural network architectures has led to notable improvements in pre-
dicting complex dynamical systems. By integrating these approaches, 
researchers have managed to maintain the physical structures, mathe-
matical symmetries, and conservation principles of the systems.  These 
approaches effectively reduce the reliance on the intensive numerical 
computations often required by traditional methods during predic-
tion tasks. For instance, under the same computational conditions, 
DDNI achieves a computation time that is only 1/15th of what tra-
ditional methods require and surpasses some commercial software in 
efficiency [41]. Similarly, other network models demand five times as 
many samples as Taylor-net to achieve a comparable validation loss 
under identical conditions [42]. Additionally, while the Roe solver 
with 2000 grids provides lower accuracy than Roenet with only 100 
grids, it incurs significantly higher computational costs [44]. These ad-
vancements demonstrate significant potential for enhancing accuracy, 
robustness, and efficiency, even when datasets are limited or training 
periods are constrained. 

We review several mechanical paradigms that employ advanced 
algorithms with physics-informed priors to tackle nonlinear dynam-
ical challenges. These include approaches like GNI for rigid–flexible 
coupling dynamics, symplectic structures for Hamiltonian systems, a 
Roe solver for hyperbolic PDEs, and LVM for incompressible fluid 
dynamics. By incorporating physics-based priors, these methods aim to 
narrow the solution space and reduce computational demands, while 
also improving prediction reliability. Integrating these structures into 
neural networks enhance physical interpretability and can better cap-
ture complex physical patterns, potentially leading to improvements in 
both accuracy and applicability.

These models have some limitations. Neural networks with embed-
ded integrators often need longer training periods compared to those 
trained with datasets that include explicit time derivatives. Besides, 
explicit time-stepping schemes usually require small time steps to 
ensure accuracy. While this enhances discretization, it can also raise 
training costs and risk gradient explosion. Moreover, these methods are 
tailored for particular physical problems, which can limit their broader 
applicability.
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Fig. 10. Two-dimensional Lagrangian scalar fields at 𝑡 = 1 with initial condition 𝜙 = 𝑥 and resolution 20002. The evolution is driven by (a) 𝑂(10) and (b) 𝑂(100) random NVM 
vortex particles [45].
Future research in this field is expected to address several key areas. 
First, exploring implicit schemes, such as recurrent neural network 
(RNN) structures [18,57], may offer potential benefits in terms of 
stability and efficiency. Furthermore, many current models are end-to-
end systems that do not account for environmental variability; hence, 
integrating online learning techniques to enhance adaptability in vary-
ing conditions is an area of growing interest. Another important focus 
will be the development of scalable methods that can generalize across 
a range of PDEs, with the aim of establishing a more versatile and 
broadly applicable framework. Additionally, applying these models 
to practical engineering challenges, particularly in learning essential 
quantities of dynamical systems such as the Hamiltonian function, 
could prove valuable, given their significance in real-world engineering 
contexts despite often being unknown.
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Appendix. Numerical schemes

We present several numerical schemes for solving the dynamics 
equations outlined in Section 3. These schemes not only provide solu-
tions to the equations but also serve as templates for designing neural 
networks. By incorporating these established methods, the neural net-
works are able to learn and replicate the dynamics more effectively. 
This approach ensures that the networks maintain the stability and 
accuracy of the original schemes, while also offering greater flexibility 
and adaptability in addressing complex problems.
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RK method. To solve Eq. (5) numerically, it is often rewritten in an 
augmented form: 
[

𝑴 𝑪𝑿
𝑪T

𝑿 𝟎

] [

𝑿̈
𝜼

]

=
[

𝑸𝑙 −𝑸𝑣 −𝑲𝑿
𝑸𝑐

]

. (A.1)

In this formulation, 𝑸𝑐 represents the constraint force [48]. By defining 
the vector 𝒚 = [𝒚T1 , 𝒚

T
2 , 𝒚

T
3 ]
T with 𝒚1 = 𝑿̇, 𝒚2 = 𝜼, and 𝒚3 = 𝑿, Eq. (A.1) 

can be expressed in the general form of an ODE: 

d𝒚
d𝑡 =

⎧

⎪

⎨

⎪

⎩

[

𝑴 𝑪𝑿
𝑪T

𝑿 𝟎

]−1 [𝑸𝑙 −𝑸𝑣 −𝑲𝑿
𝑸𝑐

]

𝒚1

⎫

⎪

⎬

⎪

⎭

▵
= 𝒇 (𝑡, 𝒚), (A.2)

with the initial condition 𝒚(𝑡0) = [𝑿̇T
0 , 𝟎

T,𝑿T
0 ]
T.

The first-order Runge–Kutta (RK) method, commonly known as the 
Euler method, updates the state vector 𝒚 by advancing in the direction 
of 𝒇 (𝑡, 𝒚) over a timestep d𝑡. The updated state at 𝑡 + d𝑡 is given by: 
𝒚(𝑡 + d𝑡) = 𝒚(𝑡) + 𝒇 (𝑡, 𝒚) ⋅ d𝑡. (A.3)

While it is straightforward and effective for simple problems, it may 
not provide sufficient accuracy for problems requiring high precision 
over extended periods.

The fourth-order RK method, or RK4, calculates the next state 
by averaging the derivatives evaluated at multiple points within the 
timestep d𝑡. The updated state at 𝑡 + d𝑡 is given by: 

𝒚(𝑡 + d𝑡) = 𝒚(𝑡) + d𝑡
6
(𝒌1 + 2𝒌2 + 2𝒌3 + 𝒌4), (A.4)

where the increments [𝒌1,𝒌2,𝒌3,𝒌4] are defined as: 
[

𝒇 (𝑡, 𝒚),𝒇
(

𝑡 + d𝑡
2
, 𝒚 +

𝒌1d𝑡
2

)

,𝒇
(

𝑡 + d𝑡
2
, 𝒚 +

𝒌2d𝑡
2

)

,𝒇 (𝑡 + d𝑡, 𝒚 + 𝒌3d𝑡)
]

.

(A.5)

RK4 achieves a global error of 𝑂(d𝑡4), providing high accuracy that is 
suitable for a wide range of applications.
Symplectic integrator. For Hamiltonian systems described by (7), the 
traditional RK method can be refined to better preserve the geometric 
symmetries inherent to Hamiltonian ODEs. If the Hamiltonian system 
is separable, meaning that  = 𝑇 (𝒑) + 𝑉 (𝒒), it can be expressed as: 
d𝒒
d𝑡 =

𝜕𝑇 (𝒑)
𝜕𝒑

,
d𝒑
d𝑡 = −

𝜕𝑉 (𝒒)
𝜕𝒒

. (A.6)

A fourth-order symplectic integrator updates the momentum 𝒑 and 
position 𝒒 over a time step d𝑡 as follows: the momentum is updated 
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Fig. A.11. Numerical integration results using a symplectic integrator (A.11) for the system  = (𝑞2 + 1)(𝑝2 + 1)∕2 over 𝑡 = 0 to 𝑡 = 20000 for different 𝜔 values: (a) 𝜔 = 0, (b) 
𝜔 = 0.95, and (c) 𝜔 = 100.
by 𝒑 − 𝑑𝑗𝛁𝑉 (𝒒) ⋅ d𝑡, and the position is updated by 𝒒 + 𝑐𝑗𝛁𝑇 (𝒑) ⋅ d𝑡 for 
𝑗 = 1, 2, 3, 4. The coefficients 𝑐𝑗 and 𝑑𝑗 are selected to minimize lower-
order error terms, ensuring fourth-order accuracy. These coefficients 
are given by [58]: 

𝑐1 = 𝑐4 =
1

2(2 − 21∕3)
, 𝑐2 = 𝑐3 =

1 − 21∕3

2(2 − 21∕3)
,

𝑑1 = 𝑑3 =
1

2 − 21∕3
, 𝑑2 = − 21∕3

2 − 21∕3
, 𝑑4 = 0.

(A.7)

By applying these updates at each time step d𝑡, the system can be 
iteratively advanced from the initial state (𝒒0,𝒑0) at time 𝑡0 to the state 
(𝒒𝑛,𝒑𝑛) at time 𝑡0 + 𝑛d𝑡, where 𝑛 denotes the number of time steps.

For a more general Hamiltonian system that is not separable, Tao 
[55] proposed a high-order, explicit, and symplectic time integrator. 
This method involves an augmented Hamiltonian defined as: 
(𝒒,𝒑,𝒙, 𝒚) ∶= 𝐴 +𝐵 + 𝜔𝐶 , (A.8)

where the terms 𝛥(𝛥 = 𝐴,𝐵, 𝐶) are defined as: 

𝐴 = (𝒒, 𝒚), 𝐵 = (𝒙,𝒑), 𝐶 = 1
2
(

‖𝒒 − 𝒙‖22 + ‖𝒑 − 𝒚‖22
)

, (A.9)

and 𝜔 is a constant that controls the interaction between the origi-
nal Hamiltonian system and an artificial constraint. The Hamiltonian 
equations for this augmented Hamiltonian are: 

⎧

⎪

⎨

⎪

⎩

d𝒒
d𝑡 = 𝜕

𝜕𝒑 = 𝜕(𝒙,𝒑)
𝜕𝒑 + 𝜔(𝒑 − 𝒚), d𝒑

d𝑡 = − 𝜕
𝜕𝒒 = − 𝜕(𝒒,𝒚)

𝜕𝒒 − 𝜔(𝒒 − 𝒙),

d𝒙
d𝑡 = 𝜕

𝜕𝒚 = 𝜕(𝒒,𝒚)
𝜕𝒚 − 𝜔(𝒑 − 𝒚), d𝒚

d𝑡 = − 𝜕
𝜕𝒙 = − 𝜕(𝒙,𝒑)

𝜕𝒙 + 𝜔(𝒒 − 𝒙),

(A.10)

with the initial condition (𝒒,𝒑,𝒙, 𝒚)|𝑡=𝑡0 = (𝒒0,𝒑0, 𝒒0,𝒑0). These equa-
tions have the same solution as (7) in the sense that (𝒒,𝒑,𝒙, 𝒚) =
(𝒒,𝒑, 𝒒,𝒑). The coefficient 𝜔 acts as a regularizer, thereby enhancing 
the stability of the numerical results.

High-order symplectic integrators can be constructed for  with 
explicit updates. Specifically, (𝒒,𝒑,𝒙, 𝒚) can be updated as follows: 

(𝒒𝑖,𝒑𝑖,𝒙𝑖, 𝒚𝑖) = 𝝓d𝑡∕21 ◦𝝓d𝑡∕22 ◦𝝓d𝑡3 ◦𝝓d𝑡∕22 ◦𝝓d𝑡∕21 ◦(𝒒𝑖−1,𝒑𝑖−1,𝒙𝑖−1, 𝒚𝑖−1),

(A.11)

where 𝝓𝛿
1(𝒒,𝒑,𝒙, 𝒚), 𝝓𝛿

2(𝒒,𝒑,𝒙, 𝒚), and 𝝓𝛿
3(𝒒,𝒑,𝒙, 𝒚) are defined as: 

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒒

𝒑 − 𝛿[𝜕(𝒒, 𝒚)∕𝜕𝒒]

𝒙 + 𝛿[𝜕(𝒒, 𝒚)∕𝜕𝒚]

𝒚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒒 + 𝛿[𝜕(𝒙,𝒑)∕𝜕𝒑]

𝒑

𝒙

𝒚 − 𝛿[𝜕(𝒙,𝒑)∕𝜕𝒙]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, and 1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝒒 + 𝒙

𝒑 + 𝒚

⎞

⎟

⎟

⎠

+𝑹𝛿
⎛

⎜

⎜

⎝

𝒒 − 𝒙

𝒑 − 𝒚

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝒒 + 𝒙

𝒑 + 𝒚

⎞

⎟

⎟

⎠

−𝑹𝛿
⎛

⎜

⎜

⎝

𝒒 − 𝒙

𝒑 − 𝒚

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(A.12)

respectively. Here 

𝑹𝛿 ∶=
[

cos(2𝜔𝛿)𝑰 sin(2𝜔𝛿)𝑰
]

, (A.13)

− sin(2𝜔𝛿)𝑰 cos(2𝜔𝛿)𝑰

10 
where 𝑰 is the identity matrix. We remark that 𝒙 and 𝒚 are auxiliary 
variables theoretically equal to 𝒒 and 𝒑.

Even if (𝒒,𝒑) is integrable, 𝐴 +𝐵 in the extended phase space 
(𝒒,𝒑,𝒙, 𝒚) may not be integrable without binding (𝜔 = 0). As 𝜔
increases, the phase space for  becomes more regular [59]. Fig.  A.11 
shows trajectories from [−3, 0,−3, 0] using a second-order symplectic 
integrator for the Hamiltonian (𝑞, 𝑝) = 1

2 (𝑞
2 + 1)(𝑝2 + 1). Increasing 𝜔

reduces the chaotic region, leading to a stable limit cycle.
Roe solver. Roe [60] introduced an approximate Riemann solver for 
hyperbolic conservation laws using the Godunov scheme. This solver 
estimates the numerical flux 𝑭  at interfaces between neighboring cells 
in a discretized space–time domain. In one dimension, Roe discretizes 
(8) as 

𝒖𝑛+1𝑗 = 𝒖𝑛𝑗 − 𝜆𝑟

(

𝑭̂ 𝑛
𝑗+ 1

2
− 𝑭̂ 𝑛

𝑗− 1
2

)

, (A.14)

where 𝜆𝑟 = 𝛥𝑡∕𝛥𝑥 is the ratio of the temporal step size 𝛥𝑡 to the spatial 
step size 𝛥𝑥, 𝑗 = 1,… , 𝑁𝑔 is the grid node index, and 

𝑭̂ 𝑛
𝑗+ 1

2
= 𝑭̂ (𝒖𝑛𝑗 , 𝒖

𝑛
𝑗+1) (A.15)

with 
𝑭̂ (𝒖, 𝒗) = 1

2
[

𝑭 (𝒖) + 𝑭 (𝒗) − |𝑨̃(𝒖, 𝒗)|(𝒗 − 𝒖)
]

. (A.16)

Designing an effective Roe solver depends on ensuring that the Roe 
matrix 𝑨̃ meets three conditions: diagonalizability with real eigenval-
ues 𝑨̃ = 𝑳−1𝜦𝑳, where 𝑳 is invertible and 𝜦 = diag(𝛬1,… , 𝛬𝑁𝑐

) is a di-
agonal matrix; consistency with the Jacobian, lim𝒖𝑗 ,𝒖𝑗+1→𝒖 𝑨̃(𝒖𝑗 , 𝒖𝑗+1) =
𝜕𝑭 (𝒖)∕𝜕𝒖; and preservation of the conservation law for the phys-
ical quantity 𝒖 across cell interfaces: 𝑭 𝑗+1 − 𝑭 𝑗 = 𝑨̃(𝒖𝑗+1 − 𝒖𝑗 ). 
Substituting Eqs. (A.15), (A.16), and |𝑨̃| = 𝑳−1

|𝜦|𝑳, where |𝜦| =
diag(|𝛬1|,… , |𝛬𝑁𝑐

|), into Eq. (A.14) along with the third Roe condition 
yields 

𝒖𝑛+1𝑗 =𝒖𝑛𝑗 −
1
2
𝜆𝑟[(𝑳𝑛

𝑗+ 1
2
)−1(𝜦𝑛

𝑗+ 1
2
− |𝜦𝑛

𝑗+ 1
2
|)𝑳𝑛

𝑗+ 1
2
(𝒖𝑛𝑗+1 − 𝒖𝑛𝑗 )

+ (𝑳𝑛
𝑗− 1

2
)−1(𝜦𝑛

𝑗− 1
2
+ |𝜦𝑛

𝑗− 1
2
|)𝑳𝑛

𝑗− 1
2
(𝒖𝑛𝑗 − 𝒖𝑛𝑗−1)],

(A.17)

with 
𝑳𝑛
𝑗+ 1

2
= 𝑳(𝒖𝑛𝑗 , 𝒖

𝑛
𝑗+1), 𝜦𝑛

𝑗+ 1
2
= 𝜦(𝒖𝑛𝑗 , 𝒖

𝑛
𝑗+1). (A.18)

Eq. (A.17) describes the evolution from 𝒖𝑛𝑗  to 𝒖𝑛+1𝑗  in the Roe solver 
framework.

Lagrangian vortex method (LVM). The LVM discretizes (9) using 𝑁
particles, transforming it into a system of ODEs governing both the 
strengths 𝜞 = {𝜞 𝑖 ∣ 𝑖 = 1,… , 𝑁} and positions 𝑿 = {𝑿𝑖 ∣ 𝑖 = 1,… , 𝑁}: 
d𝜞 𝑖
d𝑡 = 𝜸𝑖,

d𝑿𝑖
d𝑡 = 𝒖𝑖 + 𝒗𝑖. (A.19)

Here, 𝜞 𝑖 represents the particle strength, derived as the integral of 
𝝎 over the 𝑖th computational element, and 𝒖  is the induced velocity 
𝑖
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calculated by the Biot–Savart (BS) law. Additionally, 𝜸𝑖 and 𝒗𝑖 denote 
the change rate of particle strength and drift velocity [61].

Data availability

Data will be made available on request.
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