
Neurocomputing 637 (2025) 130122

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Survey Paper

Integrating neural networks with numerical schemes for dynamical systems:
A review
Jinsong Tang a,b, Yunjin Tong c, Lihua Chen a, Shengze Cai d, Shiying Xiong a ,∗

a Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
b Huanjiang Laboratory, Zhejiang University, Zhuji, Zhejiang, 311899, China
c Stanford Graduate School of Business, Stanford University, Stanford, CA, 94305, USA
d College of Control Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 311899, China

A R T I C L E I N F O

Communicated by S. Das
Keywords:
Computational dynamics
Numerical schemes
Machine learning
Neural networks

 A B S T R A C T

As scientific discovery becomes increasingly data-driven, integrating physics-based numerical methods with
advanced machine learning (ML) techniques has brought new insight in the analysis of complex physical
systems. This paper explores how this integrated approach overcomes the limitations of traditional first-
principle methods and brute-force ML techniques to achieve a more precise solution to complex physical
problems. Specifically, we review networks that combine classical numerical schemes with neural networks
applied to various physical systems. These integrated methods with residual structures effectively adhere to
system symmetries and conservation laws. This integration outperforms conventional data-driven techniques
in robustness and predictive capability, even with smaller datasets, owing to its improved ability to capture
complex physical patterns.
1. Introduction

The integration of physics-based numerical methods with machine
learning (ML) represents a promising approach to studying complex
physical systems, particularly as data-driven methodologies play an
increasingly prominent role in scientific discovery. This review dis-
cusses hybrid frameworks that combine numerical schemes with neural
networks, aiming to address some limitations of first-principle methods
and purely data-driven ML. By preserving symmetries and conservation
laws, these methods show potential for delivering accurate and robust
solutions, even with limited datasets.

The origins of these paradigms can be traced back to the foundations
of scientific inquiry. Since Newton’s era, two main paradigms have
guided scientific research: the Keplerian (data-driven) approach and
the Newtonian (first-principle-based) approach [1]. The first-principle-
based approach, while fundamental and elegant, often faces practical
limitations due to complex equations and high computational costs.
In contrast, the data-driven approach has become highly effective,
especially with advancements in statistical techniques and ML. This ap-
proach manages high-dimensional functions through statistical analysis
of their structures. By integrating learning paradigms with simulation
frameworks, these methods significantly enhance the modeling of or-
dinary differential equations (ODEs) and partial differential equations
(PDEs).

∗ Corresponding author.
E-mail address: shiying.xiong@zju.edu.cn (S. Xiong).

Despite their broad applicability, data-driven methods such as black
box neural networks face several challenges. These approaches often re-
quire large, well-clean datasets and depend on intricate structures that
can be highly sensitive to variations in input [2,3]. Furthermore, brute-
force ML with tools like deep neural networks struggles with high-
dimensional input–output spaces, costly data acquisition, physically
implausible results, and poor extrapolation robustness. These factors
complicate the accurate prediction of long-term dynamical behaviors.

To address these challenges, integrating physical information with
ML provides an effective approach for developing data-driven compu-
tational mechanics [4]. The key innovation lies in embedding physics-
based priors into learning algorithms, preserving the system’s physical
structure. Hence, these models outperform state-of-the-art data-driven
methods in accuracy, robustness, and capability, even with smaller
datasets and shorter training periods. This approach also extends be-
yond physics. For instance, Udriste et al. [5,6] employed optimization
theory in dynamic modeling to explore controllability in nonholonomic
macroeconomic systems and multitime optimal growth models. These
approaches could be enhanced by physics-informed machine learn-
ing techniques to more effectively capture the underlying complex
dynamics.

We highlight methods that integrate numerical schemes for ODEs
and PDEs into data flows, aligning them with traditional dynamical
https://doi.org/10.1016/j.neucom.2025.130122
Received 21 August 2024; Received in revised form 13 January 2025; Accepted 23
vailable online 2 April 2025
925-2312/© 2025 Elsevier B.V. All rights are reserved, including those for text and
 March 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
https://orcid.org/0000-0002-0468-4249
mailto:shiying.xiong@zju.edu.cn
https://doi.org/10.1016/j.neucom.2025.130122
https://doi.org/10.1016/j.neucom.2025.130122

J. Tang et al. Neurocomputing 637 (2025) 130122
system approaches. Significant advancements include the development
of residual networks (ResNet) [7] that combine neural networks with
discrete Euler integrators for ODEs, and the introduction of Neural
ODEs [8] that utilize continuous data flow mechanisms. This progres-
sion from ResNet to Neural ODEs represents a shift from discrete to
continuous dynamics, enhancing the modeling of ODEs. By employing
customized solving schemes, these neural network data flows can be
tailored to specific physical and mechanical contexts. The neural net-
works discussed in this paper are built on these concepts, incorporating
targeted modifications to improve expressive power for particular phys-
ical applications. We present representative work from solid mechanics,
Hamiltonian mechanics, and fluid dynamics.

In solid mechanics, neural networks are used as surrogate models
to replace complex physical models. For example, Ma et al. developed
neural networks for surface contact collisions [9], and these networks
have proven effective in modeling nonlinear materials [10,11]. Zhang
et al. developed hierarchical deep-learning neural networks (HiDeNN)
using FEM representations, where network weights and biases are
dependent on node positions [12–14]. Huang et al. proposed a problem-
independent machine learning (PIML) technique to mitigate FEM’s
computational cost in structural topology optimization, mapping shape
functions to material densities within the extended multi-scale FEM
(EMsFEM) framework [15,16].

Hamiltonian mechanics, expressed in symplectic spaces, extends
beyond classical mechanics to continuous systems like electromag-
netic fields and fluids. Greydanus et al. introduced Hamiltonian neural
networks (HNNs) to preserve Hamiltonian energy by modifying the
loss function [17]. Building on this, methods such as SRNN [18] and
SSINN [19] embed symplectic integrators into recurrent neural net-
works to solve separable Hamiltonian systems and address large-scale
N-body problems [20,21]. Jin et al. developed SympNet for handling
both separable and nonseparable Hamiltonian systems, though it faces
scalability issues with high-dimensional problems [22]. Additionally,
Hamiltonian-based neural networks have been adapted for broader
applications: Toth et al. created the Hamiltonian generative network
(HGN) for inferring dynamics from high-dimensional data [23], and
Zhong et al. introduced symplectic ODE-Net (SymODEN) to incorporate
external control in Hamiltonian systems [24].

In fluid mechanics, research is increasingly integrating physical
priors into ML to ground neural networks in physical laws rather
than relying solely on data [25–28]. Raissi et al. introduced physics-
informed neural networks (PINNs) to incorporate principles such as
symmetry and conservation into the learning process [29,30]. PINNs
have been shown to capture irregular PDE solutions without regular-
ization [31] and can model high-speed flows by integrating the Euler
equations into the loss function [32]. Embedding PDE structures into
neural networks aids in understanding complex fluid dynamics [33–
35], though challenges remain due to high dimensionality and limited
data. For high Reynolds number flows, traditional turbulence models
are still necessary, but data-driven approaches are advancing turbu-
lence prediction [36–39]. Bin et al. found that progressive ML models
are compatible with traditional turbulence modeling [40].

To better illustrate the mathematical derivation, architecture, and
effectiveness of this approach, we will examine five specific examples:
data-driven numerical integration networks (DDNI) [41], symplectic
Taylor neural networks (Taylor-nets) [42], nonseparable symplectic
neural networks (NSSNNs) [43], Roe neural networks (RoeNet) [44],
and the neural vortex method (NVM) [45]. Our analysis highlights
two main advantages of integrating numerical schemes with neural
networks:

1. Preserve symmetries: integrate classical numerical schemes
and neural networks to maintain symmetries and conservation
laws, ensuring more accurate and efficient solutions.

2. Enhance expressive power: use higher-order residual struc-
tures to model complex physical phenomena, such as sound
waves and vortices, capturing intricate patterns more effectively.
2
The outline of this paper is as follows. Section 2 covers ResNet and
neural ODEs, illustrating their extension to complex physical systems
for developing new data-driven numerical methods. Section 3 reviews
fundamental principles of various mechanical systems. Section 4 de-
scribes the network design. Section 5 summarizes key implementa-
tion details and experimental findings. Finally, Section 6 discusses the
numerical results, method limitations, and potential future research
directions.

2. Residual networks and neural ordinary differential equations

In conventional deep neural networks, the output 𝒚 of a block is
generally represented as:
𝒚 =  (𝒙,𝜽), (1)

where 𝒙 denotes the input, 𝜽 refers to the parameters of the neural
network, and  (𝒙,𝜽) represents the function learned by the block.
This function typically includes components such as convolutional
layers, activation functions, and batch normalization parameters, which
encompass weights and biases.

Introduced by He et al. [7], ResNet employs residual learning
to effectively train very deep networks and address the challenges
associated with deep architectures. The key concept of ResNet is to
focus on learning the residual function rather than the entire mapping.
Specifically, the network is designed to learn:
𝒚 =  (𝒙,𝜽) + 𝒙. (2)

In contrast to the standard approach represented by (1), the formula-
tion in (2) includes a shortcut connection 𝒙 that directly links the input
to the output.

ResNet represents a notable advancement in deep neural network
architecture by incorporating residual connections to aid in the learning
of complex functions. This design improves training efficiency and
performance, particularly for very deep networks, thereby facilitating
the effective training of models with hundreds or even thousands of
layers and addressing the degradation problem associated with deep
architectures. ResNet has achieved state-of-the-art results in various
tasks, including image classification and object detection.

Neural ODEs [8] extend the principles of residual learning to con-
tinuous dynamics by modeling data transformations as a continuous
process governed by an ODE. Specifically, the evolution of the hidden
state 𝒉(𝑡) over time 𝑡 is described by:
d𝒉(𝑡)
d𝑡 =  (𝒉, 𝑡,𝜽), (3)

where  is a neural network that specifies the rate of change, and 𝜽
denotes its parameters. This approach offers a flexible and memory-
efficient alternative to traditional discrete deep networks.

The concepts underlying Neural ODEs offer several opportunities for
further development. One potential avenue is improving time integra-
tion solvers by utilizing symplectic integrators rather than conventional
Euler or RK methods. Additionally, integrating graph neural networks
(GNNs) could enhance the modeling of nonlinear interactions between
computational units, which would support the Lagrangian description
of multi-body systems. Finally, the application of spatial differential
operators could provide a framework for describing the spatiotemporal
evolution of continuous media governed by PDEs.

Neural ODEs can be extended to the following generalized form:
𝜕𝒉(𝒙, 𝑡)

𝜕𝑡
=  (𝒉,𝒙, 𝑡,𝜽). (4)

The network also takes additional inputs 𝒙, such as spatial coordinates,
external responses, and the coupling of multiphysics fields. Addition-
ally, the process of solving Eq. (4) can be customized using specific
numerical schemes. By extending the dynamic formulation in (4) and
applying specialized solving techniques – such as symplectic schemes,

J. Tang et al. Neurocomputing 637 (2025) 130122
Fig. 1. Methods from ResNet to Neural ODEs to our customized networks for ODE modeling from discrete to continuous to customized dynamics.
Table 1
Overview of mathematical background and numerical solvers.
 Dynamics systems Physical priors Solvers
 Flexible multibody systems Floating reference frame Runge–Kutta integrator
 Hamiltonian systems Symplectic structure Symplectic integrator
 Hyperbolic PDEs Hyperbolic conservation law Roe solver
 Incompressible flows Helmholtz’s theorem Lagrangian vortex method
vorticity-preserving schemes, and shock-capturing methods – the data
flow can be enhanced with specific structural properties.

Fig. 1 illustrates the central theme of our review. The transition from
ResNet to Neural ODEs highlights a shift from discrete to continuous
dynamics, which enhances the modeling of ODEs. This approach, along
with the application of tailored solving schemes, illustrates how neural
network data flows can be adapted to physical and mechanical contexts.

3. Dynamics equations

We illustrate the integration of mathematical principles derived
from physical problems into numerical schemes through a series of
examples. Specifically, the numerical algorithms for the relevant dy-
namical systems are provided in Appendix. This demonstration high-
lights how incorporating such mathematical priors can enhance the
effectiveness and accuracy of numerical solutions. Table 1 provides
a summary of the mathematical foundations and numerical solvers
discussed in this section, providing an overview of the key concepts
and methodologies employed.

3.1. Rigid–flexible coupling dynamics

We use a floating reference frame to analyze the motion of flexible
structures [46–48] and model the rigid–flexible coupling dynamics in
flexible multibody systems as follows:
𝑴𝑿̈ +𝑲𝑿 + 𝑪T

𝑿𝜼 = 𝑸𝑙 −𝑸𝑣, (5)

where 𝑪(𝑿, 𝑡) = 𝟎 represents the kinematic constraint and (𝑿0, 𝑿̇0)
specifies the initial conditions, 𝑿̇ and 𝑿̈ denote the first and second
time derivatives of 𝑿, respectively. The matrix 𝑪𝑿 is the Jacobian of
the constraint function 𝑪(𝑿, 𝑡), 𝑲 is the stiffness matrix, and 𝜼 is the
Lagrange multiplier. The mass matrix 𝑴 and load vectors 𝑸𝑙 and 𝑸𝑣

are computed as follows:

𝑴 = ∫𝛺
𝜌𝑳T(𝑿)𝑳(𝑿)d𝛺, 𝑸𝑙 = ∫𝛺

𝜌𝑳(𝑿)T𝒃d𝛺,

𝑸𝑣 = 𝜌𝑳T(𝑿)𝒂(𝑿, 𝑿̇)d𝛺,
(6)
∫𝛺

3
 where 𝜌 represents the material density, 𝛺 defines the spatial domain
of the structure, 𝑳 characterizes the kinematic properties, 𝒃 corresponds
to the body forces, and 𝒂 accounts for the Coriolis and centripetal
forces.

3.2. Hamiltonian dynamics

A Hamiltonian system is characterized by 𝑁 pairs of canonical
coordinates, which consist of generalized positions 𝒒 and generalized
momenta 𝒑. The dynamics of these coordinates over time are governed
by Hamilton’s equations:
d𝒒
d𝑡 = 𝜕

𝜕𝒑
,
d𝒑
d𝑡 = − 𝜕

𝜕𝒒
. (7)

Here, 𝒒 = (𝑞1, 𝑞2,… , 𝑞𝑁) represents the generalized positions, 𝒑 =
(𝑝1, 𝑝2,… , 𝑝𝑁) denotes the generalized momenta, and (𝒒,𝒑) is the
Hamiltonian function.

3.3. Hyperbolic conservation laws

In fluid mechanics, conservation laws such as those for mass, mo-
mentum, and energy are described by first-order quasilinear hyperbolic
PDEs:
𝜕𝒖
𝜕𝑡

+
𝜕𝑭 (𝒖)
𝜕𝒙

= 𝟎, (8)

along with appropriate initial and boundary conditions. Here, 𝒖 is an
𝑁𝑐 -component vector representing the conserved quantities, 𝑡 ∈ [𝑡0, 𝑡1]
denotes time, 𝒙 refers to the spatial coordinates within the domain 𝛺,
and 𝑭 is the 𝑁𝑐 -component flux function.

3.4. Vortex dynamics

For an incompressible fluid, the Navier–Stokes (NS) equations can
be rewritten in terms of the vorticity field 𝝎 = 𝛁 × 𝒖 as [49]
D𝝎 = (𝝎 ⋅ 𝛁)𝒖 + 𝜈𝛁2𝝎 + 𝛁 × 𝒇 , ∇2𝜳 = −𝝎, (9)
D𝑡

J. Tang et al. Neurocomputing 637 (2025) 130122
Fig. 2. Schematic diagrams of the integration of numerical schemes with neural networks for solving and predicting dynamic problems.
where 𝒇 is the body force and 𝜳 is a vector potential such that 𝒖 =
𝛁 × 𝜳 . This formulation highlights the vorticity dynamics and, in the
inviscid limit (𝜈 = 0), describes the motion of vortex lines and surfaces,
as outlined by Helmholtz’s theorems [50–52].

4. Neural networks based on numerical schemes

We illustrate the development of neural networks that incorporate
numerical schemes. Through various examples, we demonstrate how
integrating numerical methods with neural networks can enhance their
capability to solve and predict complex dynamic problems. Fig. 2
depicts this integration, showcasing how numerical schemes are em-
bedded within neural network architectures to effectively handle and
predict dynamic behaviors.

4.1. Data-driven numerical integration networks

For flexible structures, the time integration of (A.2) involves finite
element discretization and Gaussian numerical integration (GNI), both
of which are computationally intensive. The DDNI method [41] uses
deep neural networks with generalized coordinates 𝑿 and velocities 𝑿̇
to update dynamic quantities via the relations in (6),
𝑴𝜽1 (𝑿) → 𝑴 ,𝑸𝑙

𝜽2
(𝑿) → 𝑸𝑙 ,𝑸𝑣

𝜽3
(𝑿, 𝑿̇) → 𝑸𝑣, (10)

 where the parameters (𝜽1,𝜽2,𝜽3) are optimized by minimizing the
prediction error between DDNI and GNI. DDNI reduces computational
complexity by exploiting mass matrix symmetry and mapping physical
degrees of freedom (DOFs) to modal space, thereby simplifying the neu-
ral network and facilitating the storage of time-independent quantities,
such as the stiffness matrix 𝑲.

Given the load, initial conditions, and constraints, RK4 is used
for time integration. Dynamic quantities 𝑴 , 𝑸𝑙, and 𝑸𝑣 are directly
predicted from state variables 𝑿 and 𝑿̇ at each time step, advancing
the dynamics without traversing numerous elements, thus significantly
enhancing efficiency.

4.2. Symplectic neural networks

Symplectic Taylor neural networks. In the separable Hamiltonian prob-
lem governed by (A.6), Taylor-nets [42] predict system evolution using
generalized coordinates 𝒒 and momenta 𝒑 as state variables. These
4
networks learn the gradients of the Hamiltonian with respect to these
coordinates via symmetric networks 𝑻 𝑝 and 𝑽 𝑞 :

𝑻 𝑝(𝒑,𝜽𝑝) →
𝜕𝑇 (𝒑)
𝜕𝒑

, 𝑽 𝑞(𝒒,𝜽𝑞) →
𝜕𝑉 (𝒒)
𝜕𝒒

, (11)

where (𝜽𝑝,𝜽𝑞) are parameters trained to model the right-hand side of
(A.6). Taylor-nets utilize symmetric nonlinear terms similar to those in
a Taylor polynomial, combined linearly. These networks, 𝑻 𝑝(𝒑,𝜽𝑝) and
𝑽 𝑞(𝒒,𝜽𝑞), are defined as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑻 𝑝(𝒑,𝜽𝑝) =
𝑀
∑

𝑖=1
(𝑨𝑇

𝑖 ◦𝑓𝑖◦𝑨𝑖 − 𝑩𝑇
𝑖 ◦𝑓𝑖◦𝑩𝑖)◦𝒑 + 𝒃,

𝑽 𝑞(𝒒,𝜽𝑞) =
𝑀
∑

𝑖=1
(𝑪𝑇

𝑖 ◦𝑓𝑖◦𝑪 𝑖 −𝑫𝑇
𝑖 ◦𝑓𝑖◦𝑫𝑖)◦𝒒 + 𝒅,

(12)

where ‘◦’ denotes function composition, 𝑨𝑖 and 𝑩𝑖 are fully connected
layers of size 𝑁ℎ × 𝑁 , 𝒃 is a bias vector of dimension 𝑁 , and 𝑀 is
the number of terms in the Taylor series. 𝑻 𝑝(𝒑,𝜽𝑝) takes 𝒑 as input
with parameters 𝜽𝑝 = (𝑨𝑖,𝑩𝑖, 𝒃). Each negative term 𝑩𝑇

𝑖 ◦𝑓𝑖◦𝑩𝑖 com-
plements a positive term 𝑨𝑇

𝑖 ◦𝑓𝑖◦𝑨𝑖, allowing representation of any
symmetric matrix. The function 𝑓𝑖 represents the 𝑖th order term in
the Taylor series, defined as 𝑓𝑖(𝑥) = 𝑥𝑖∕𝑖!. 𝑽 𝑞(𝒒,𝜽𝑞) follows a similar
structure. During training, these networks minimize the loss between
their separable symplectic integration and the ground truth.
Nonseparable symplectic neural networks. NSSNNs [43] are extended
to nonseparable Hamiltonian mechanics for the prediction of sys-
tem evolution. They learn dynamics through an augmented system
(A.8), enabling extraction of the energy function (𝒒,𝒑) via neu-
ral network 𝜃(𝒒,𝒑) trained with parameters 𝜽 and computation of
its gradient 𝛁𝜃(𝒒,𝒑). The input layer of the integrator starts with
(𝒒,𝒑,𝒙, 𝒚) = (𝒒0,𝒑0, 𝒒0,𝒑0) at 𝑡 = 𝑡0, and the output layer is (𝒒,𝒑,𝒙, 𝒚) =
(𝒒𝑛,𝒑𝑛,𝒙𝑛, 𝒚𝑛) at 𝑡 = 𝑡0 + 𝑛d𝑡. Furthermore, since 𝒙 and 𝒚 theoretically
represent 𝒒 and 𝒑 in (A.12), the dataset can be constructed with
variables (𝒒,𝒑,𝒙, 𝒚) derived from (𝒒,𝒑). The network 𝜃 ensures that
𝝓𝛿
1, 𝝓𝛿

2, and 𝝓𝛿
3 in (A.12) maintain the system’s symplectic structure.

This property guarantees that constructing the network preserves the
Hamiltonian flow’s symplecticity.

4.3. Roe neural networks

RoeNet [44] learns the weak solution of (8) without a prescribed
𝑭 , using a neural network based on the Roe solver. It takes 𝒖 as input

J. Tang et al. Neurocomputing 637 (2025) 130122
state, predict matrices 𝑳𝜃 → 𝑳 and 𝜦𝜙 → 𝜦, and facilitate the Roe
solver. Substituting 𝑳𝜃 and 𝜦𝜙 into (A.17) and (A.18) yields

𝒖𝑛+1𝑗 =𝒖𝑛𝑗 −
1
2
𝜆𝑟(𝑳𝑛

𝑗+ 1
2 ,𝜃

)+(𝜦𝑛
𝑗+ 1

2 ,𝜙
− |𝜦𝑛

𝑗+ 1
2 ,𝜙

|)𝑳𝑛
𝑗+ 1

2 ,𝜃
(𝒖𝑛𝑗+1 − 𝒖𝑛𝑗)

− 1
2
𝜆𝑟(𝑳𝑛

𝑗− 1
2 ,𝜃

)+(𝜦𝑛
𝑗− 1

2 ,𝜙
+ |𝜦𝑛

𝑗− 1
2 ,𝜙

|)𝑳𝑛
𝑗− 1

2 ,𝜃
(𝒖𝑛𝑗 − 𝒖𝑛𝑗−1),

(13)

with
𝑳𝑛
𝑗+ 1

2 ,𝜃
= 𝑳𝜃(𝒖𝑛𝑗 , 𝒖

𝑛
𝑗+1), 𝜦𝑛

𝑗+ 1
2 ,𝜙

= 𝜦𝜙(𝒖𝑛𝑗 , 𝒖
𝑛
𝑗+1). (14)

In RoeNet, Eq. (13) governs the evolution of the system’s states from
𝒖𝑛𝑗 to 𝒖𝑛+1𝑗 . In practice, 𝑳𝜃 and 𝜦𝜙 utilize ResBlocks [7], ending with
linear layers sized 𝑁ℎ×𝑁𝑐 and 𝑁ℎ, respectively. 𝜦𝜙’s parameters create
a diagonal matrix with 𝑁ℎ entries. RoeNet efficiently predicts solutions
for hyperbolic conservation laws, even with discontinuous behavior,
using limited discontinuity information from short training windows.

4.4. Neural vortex method

The NVM [45] employs Eulerian representations of the flow field
to reconstruct the underlying fluid dynamics using neural networks.
Integration of two networks with a vorticity-to-velocity Poisson solver
enables high-resolution extraction of Eulerian flow from Lagrangian
inductive priors. This approach addresses the difficulty of directly
interpreting velocity and pressure fields from high-dimensional obser-
vations such as images. The detection network takes a vorticity field
as input, which is then split into two branches. One branch predicts
the probability of vortex presence using convolution, while the other
locates the exact positions of vortices. During training, the network
penalizes incorrect position detections only when it fails to detect a
vortex in cells as per the ground truth from DNS. This approach mirrors
real-time object detection methodologies discussed in Redmon et al.
(2016) [53]. Additionally, the focal loss [54] is applied to mitigate
issues related to imbalanced classification.

To predict vortex dynamics, two GNNs [21], 𝑨(𝜽1) and 𝑨(𝜽2), are
employed. 𝑨(𝜽1) models induced velocities between vortices based on
their positions and vorticity detected by the detection network. The
output vector from 𝑨(𝜽1) characterizes the induced velocity of each
vortex element 𝑗 (where 𝑗 ≠ 𝑖) on vortex 𝑖. This approach sums up
all induced velocities on vortex 𝑖 to compute the total induced velocity
from other vortices. On the other hand, 𝑨(𝜽2) predicts external force
influences based on local vorticity and vortex positions.

5. Numerical results

In this section, we present the applications and impacts of advanced
network architectures in computational mechanics, illustrated through
several detailed cases. Our focus includes examining the effectiveness
and efficiency of these novel approaches in solving complex problems.

For a more comprehensive understanding of the methodologies and
outcomes discussed, please refer to the detailed studies and examples
provided in the works of Tang et al. [41], Tong et al. [42], Xiong et al.
[43], Tong et al. [44], and Xiong et al. [45]. These references offer
in-depth analyses and additional context regarding the implementation
and results of the discussed network architectures.

5.1. Data-driven numerical integration networks

We present a case study of a two-dimensional rotating beam ana-
lyzed with DDNI under harmonic, piecewise linear, and constant loads.
Fig. 3 shows the beam’s dynamic responses. Validation suggests several
advantages of DDNI: it is approximately 15 times faster than GNI
and demonstrates computational efficiency comparable to commercial
software, even when accounting for training time [41]; it requires
only a single training session and performs reliably across a range
of operating conditions; and it achieves high accuracy with minimal
trade-offs, as illustrated in Fig. 3(f).
5
5.2. Symplectic Taylor neural networks

We examine three Hamiltonian systems: Pendulum with 𝐻(𝑝, 𝑞) =
𝑝2∕2 − cos 𝑞, Lotka–Volterra with 𝐻(𝑝, 𝑞) = 𝑝− 𝑒𝑝 + 2𝑞 − 𝑒𝑞 , and Hénon–
Heiles with 𝐻(𝑝, 𝑞) = (𝑝21 +𝑝22)∕2+ (𝑞21 + 𝑞22)∕2+ (𝑞21𝑞2 − 𝑞32∕3). We use the
Taylor-net to model and predict system behavior, comparing its perfor-
mance to that of Neural ODE, as shown in Fig. 4. For each Hamiltonian
system, we generate random initial conditions and perform short-term
simulations with 𝛥𝑡 = 0.01 using symplectic integration for training.
The model then predicts the long-term behavior based on these initial
conditions, demonstrating Taylor-net’s robust predictive capability over
extended timeframes. On the other hand, the Neural ODE relies on
a basic Euler method for integration and does not incorporate the
symplectic structure or domain-specific priors. As a result, the Neural
ODE fails to preserve the system’s inherent structure, causing errors to
accumulate over time. This highlights the importance of incorporating
structural information to prevent error growth and maintain accuracy
in long-term predictions.

To evaluate the accuracy of the methods, we define the following
error metric:

Error =

√

√

√

√

𝑁𝑡
∑

𝑖=1

[

(𝑝P𝑖 − 𝑝G𝑖)2 + (𝑞P𝑖 − 𝑞G𝑖)2
]

, (15)

where 𝑁𝑡 denotes the total number of time steps for which predictions
are made, and the superscripts P and G indicate the predicted values
and the ground truth, respectively. This metric quantifies the overall
discrepancy between the predicted and actual values, accounting for
deviations in both 𝑝- and 𝑞-components over time.

As shown in Fig. 4, the Taylor-net model exhibits significantly
higher accuracy, with prediction errors of 0.2298, 0.2652, and 0.5800
across the three systems. In contrast, the Neural ODE model performs
poorly, with much larger errors of 13.7000, 39.8828, and 41.4106.
These results underscore the limitations of the Neural ODE model in
accurately capturing system dynamics.

The lower errors achieved by the Taylor-net model underscore its
effectiveness in modeling complex temporal behaviors. Meanwhile, the
Neural ODE model’s high error rates suggest limitations in its ability
to generalize, indicating that further refinement of its architecture or
training process may be necessary.

5.3. Nonseparable symplectic neural networks

We showcase the superior performance of NSSNN by predicting the
system  = 0.5(𝑞2 + 1)(𝑝2 + 1) [55] over the interval 𝑡 = 0 to 𝑡 =
20000 with initial conditions (𝑞0, 𝑝0) = (0,−3). The training data spans
only [0, 0.2]. Fig. 5 compares predictions from various neural networks,
all trained under identical conditions, to the ground truth. Neural
ODEs exhibit larger errors due to their lack of embedded symplectic
structure. While the other two networks, which focus on learning the
Hamiltonian, achieve faster learning, HNN’s stability is lower compared
to NSSNN. NSSNN, with its nonseparable symplectic integrator, excels
in long-term predictions. Similarly, the errors associated with the three
methods – Neural ODE, HNN, and NSSNN – are computed using (15).
The resulting values are 81.6601, 29.3517, and 6.7406, respectively.

In Fig. 6, we use the trained model to predict the dynamics of three
aligned 2D vortices, where the evolution of the vortices is driven by
the interaction of 6400 particles with vorticity. The results from NSSNN
and HNN are compared with the ground truth [43]. The initial vorticity
conditions are based on [56]. The key challenge is keeping the vortices
separate rather than merging into larger structures. NSSNN preserves
the separation of vortices as shown in the ground truth, whereas HNN
leads to vortex merging. We remark that NSSNN is distinguished by
several notable features. While HNN enforces the conservative prop-
erties of a Hamiltonian system through its loss function, it relies on
temporal derivatives of momentum and position, which are challenging
to obtain, and does not fully preserve the symplectic structure. In

J. Tang et al. Neurocomputing 637 (2025) 130122
Fig. 3. (a)–(c) rotation angle and (d)–(f) angular velocity correspond to dynamic response results: simple harmonic, piecewise linear, and constant loads, respectively [41].
Fig. 4. The prediction for the dynamics of three Hamiltonian systems using Taylor-net: (a) Pendulum for 𝑡 = 4𝜋, (b) Lotka–Volterra for 𝑡 = 4𝜋, and (c) Hénon–Heiles for 𝑡 = 10.
Results are compared with those from the Neural ODE, which uses a simple Euler method without symplectic structure or domain-specific priors, causing error accumulation over
time.
Fig. 5. Comparison of prediction results for the Lotka–Volterra system: (a) Neural ODE, (b) HNN, (c) NSSNN.
contrast, the Neural ODE-based NSSNN overcomes these limitations
by incorporating an integrator into the network and embedding the
Hamiltonian prior to predict continuous system trajectories, showing
strong potential for a wide range of applications.

5.4. Roe neural networks

We first demonstrate RoeNet’s ability to predict first-order linear
hyperbolic PDEs of the form (8) with 𝑭 (𝒖) = 𝑨𝒖, where 𝑨 is a
6
constant 𝑁𝑐×𝑁𝑐 matrix. Fig. 7 shows the prediction results for a single-
component linear hyperbolic PDE with 𝑭 = 𝑥 and initial condition
𝑢(𝑡 = 0, 𝑥) = 𝑒−300𝑥2 . In Fig. 7(a), we compare the predictions of RoeNet,
RoeNet with noisy training data, and the Roe solver against the exact
solution at 𝑡 = 0.3. RoeNet outperforms the numerical Roe solver, even
with noise 𝜖 ∼  (0, 0.1). At larger 𝑡, RoeNet’s predictions remain accu-
rate with or without noise, while the Roe solver’s performance worsens,
as shown in Fig. 7(b). Additionally, we evaluate the temporal evolution
of computational errors for the RoeNet in comparison with traditional
methods. Fig. 7(c) shows the average deviation 𝜆 =

⟨

|𝑢P − 𝑢G|
⟩ of
𝑢

J. Tang et al. Neurocomputing 637 (2025) 130122
Fig. 6. Visualization of three aligned 2D vortices, where the vortex evolution is driven by the interaction of 6400 particles with vorticity. Results from NSSNN and HNN are
compared with the ground truth.
Fig. 7. Comparison of RoeNet and Roe solver for a one-component linear hyperbolic PDE: (a) 𝑡 = 0.3, (b) 𝑡 = 1.3, and (c) average deviation 𝜆𝑢 =
⟨

|𝑢P − 𝑢G|
⟩

. ‘‘RoeNet (noise)’’
indicates RoeNet with training noise 𝜖 ∼  (0, 0.1).
the predicted solutions from the exact solution. RoeNet’s deviation,
indicated by the red circle line, is almost negligible, demonstrating its
high accuracy. Even with noise, RoeNet’s prediction error is more than
ten times smaller than that of the numerical Roe solver, highlighting
RoeNet’s robustness.

We also apply RoeNet to solve a three-component linear hyperbolic
PDE (8) with
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑭 =

⎡

⎢

⎢

⎢

⎣

0.3237 2.705 5.4101
0.3597 −0.4388 −2.8777
−0.0144 0.0576 1.1151

⎤

⎥

⎥

⎥

⎦

𝒙,

𝒖(𝑡 = 0, 𝑥 ≤ 0) = (0.4, 0.4, 0.4), 𝒖(𝑡 = 0, 𝑥 > 0) = (−0.4,−0.4,−0.4).

(16)

Fig. 8 shows the exact solutions and the predicted results for the
three components 𝑢(1), 𝑢(2), and 𝑢(3) of a Riemann problem with a
linear flux function. The predictions by RoeNet match the exact solu-
tions perfectly, while the Roe solver shows obvious errors around the
discontinuities at 𝑥 ≈ ±0.3.
7
We show that RoeNet can predict long-term discontinuities of the
inviscid Burgers’ equation using only a short window of continuous
training data. This equation, given by (8) with 𝐹 = 1

2 𝑢
2 and 𝑢(𝑡 =

0, 𝑥) = 1
2 + sin(2𝜋𝑥), is a fundamental PDE in multiple fields and can

develop shock waves. In the absence of an analytical solution, Fig. 9
compares RoeNet’s predictions with those of the Roe solver at 𝑡 = 0,
𝑡 = 0.15, and 𝑡 = 0.3. The perfect match between RoeNet and the Roe
solver demonstrates RoeNet’s ability to predict future discontinuities
from limited data, marking a significant breakthrough in predictive
capabilities.

We remark that current neural network-based methods typically
solve PDEs using datasets or predict continuous solutions. PINNs re-
quire knowledge of the governing PDE and periodic feedback, of-
ten relying on Hessian-based optimizers, which can increase training
time [4]. In contrast, RoeNet only requires training data and employs
gradient-based optimizers, leading to reduced computational costs and
enhanced efficiency [44]. While conventional networks may struggle
with predicting discontinuous solutions without a governing equation,

J. Tang et al. Neurocomputing 637 (2025) 130122
Fig. 8. Riemann problem with three components and a linear flux function. (a), (b), and (c) show the predictions by RoeNet and Roe solver, along with the exact solutions for
the components 𝑢(1), 𝑢(2), and 𝑢(3), respectively.
Fig. 9. Inviscid Burgers’ equation with 𝑢(𝑡 = 0, 𝑥) = 0.5 + sin(2𝜋𝑥) at (a) 𝑡 = 0, (b) 𝑡 = 0.15, and (c) 𝑡 = 0.3.
RoeNet shows improved performance in tasks where traditional meth-
ods encounter difficulties, especially for larger time values not included
in the training data.

5.5. Neural vortex method

Figure 5 of [45] assesses the predictive capabilities of the NVM
for the NS equations within a periodic domain, highlighting its ef-
fectiveness in capturing fluid dynamics in comparison to traditional
LVM. The analysis focuses on two vortex particles, characterized by
their predetermined initial positions and strengths. The results indicate
that NVM’s predictions align closely with those from DNS, whereas
LVM exhibits significant errors in predicting vortex positions. Further-
more, NVM maintains a lower relative error over longer prediction
intervals, highlighting its superior accuracy and reliability compared
to traditional methods.

NVM also effectively predicts complex turbulence systems, as il-
lustrated in Fig. 10, which shows two-dimensional Lagrangian scalar
fields at 𝑡 = 1 with initial condition 𝜙 = 𝑥 and resolution 20002. The
fields evolve with 𝑂(10) and 𝑂(100) NVM vortex particles, each with
random positions ∼ 𝑈 (0, 4) and strengths ∼ 𝑈 (0, 2) at the initial time,
using the same trained model. By applying backward-particle-tracking
to the NVM particle velocity fields, we solve the scalar field evolution
equation and extract material structures. Fig. 10(a) shows clear spiral
structures with fewer particles, while Fig. 10(b) displays turbulence
with many particles. NVM demonstrates its potential to model complex
turbulence with notable detail and efficiency, running on relatively
modest hardware. For example, it was tested on a laptop with an Intel
Core i7-9750H processor at 2.60 GHz, 16 GB of RAM, and an NVIDIA
GeForce RTX 2060 GPU with 16 GB memory. This suggests that NVM
can achieve reasonable accuracy without the need for advanced or
specialized computing resources, making it a practical and accessible
tool for turbulence modeling [45].

6. Conclusion

This manuscript offers a review of recent research where data-
driven methods and computational mechanics intersect. It explores
8
how combining physics-informed numerical schemes with advanced
neural network architectures has led to notable improvements in pre-
dicting complex dynamical systems. By integrating these approaches,
researchers have managed to maintain the physical structures, mathe-
matical symmetries, and conservation principles of the systems. These
approaches effectively reduce the reliance on the intensive numerical
computations often required by traditional methods during predic-
tion tasks. For instance, under the same computational conditions,
DDNI achieves a computation time that is only 1/15th of what tra-
ditional methods require and surpasses some commercial software in
efficiency [41]. Similarly, other network models demand five times as
many samples as Taylor-net to achieve a comparable validation loss
under identical conditions [42]. Additionally, while the Roe solver
with 2000 grids provides lower accuracy than Roenet with only 100
grids, it incurs significantly higher computational costs [44]. These ad-
vancements demonstrate significant potential for enhancing accuracy,
robustness, and efficiency, even when datasets are limited or training
periods are constrained.

We review several mechanical paradigms that employ advanced
algorithms with physics-informed priors to tackle nonlinear dynam-
ical challenges. These include approaches like GNI for rigid–flexible
coupling dynamics, symplectic structures for Hamiltonian systems, a
Roe solver for hyperbolic PDEs, and LVM for incompressible fluid
dynamics. By incorporating physics-based priors, these methods aim to
narrow the solution space and reduce computational demands, while
also improving prediction reliability. Integrating these structures into
neural networks enhance physical interpretability and can better cap-
ture complex physical patterns, potentially leading to improvements in
both accuracy and applicability.

These models have some limitations. Neural networks with embed-
ded integrators often need longer training periods compared to those
trained with datasets that include explicit time derivatives. Besides,
explicit time-stepping schemes usually require small time steps to
ensure accuracy. While this enhances discretization, it can also raise
training costs and risk gradient explosion. Moreover, these methods are
tailored for particular physical problems, which can limit their broader
applicability.

J. Tang et al. Neurocomputing 637 (2025) 130122
Fig. 10. Two-dimensional Lagrangian scalar fields at 𝑡 = 1 with initial condition 𝜙 = 𝑥 and resolution 20002. The evolution is driven by (a) 𝑂(10) and (b) 𝑂(100) random NVM
vortex particles [45].
Future research in this field is expected to address several key areas.
First, exploring implicit schemes, such as recurrent neural network
(RNN) structures [18,57], may offer potential benefits in terms of
stability and efficiency. Furthermore, many current models are end-to-
end systems that do not account for environmental variability; hence,
integrating online learning techniques to enhance adaptability in vary-
ing conditions is an area of growing interest. Another important focus
will be the development of scalable methods that can generalize across
a range of PDEs, with the aim of establishing a more versatile and
broadly applicable framework. Additionally, applying these models
to practical engineering challenges, particularly in learning essential
quantities of dynamical systems such as the Hamiltonian function,
could prove valuable, given their significance in real-world engineering
contexts despite often being unknown.

CRediT authorship contribution statement

Jinsong Tang: Writing – original draft, Visualization, Methodology,
Formal analysis. Yunjin Tong: Writing – review & editing, Formal anal-
ysis. Lihua Chen: Writing – review & editing, Formal analysis. Shengze
Cai: Writing – review & editing, Validation. Shiying Xiong: Writing
– review & editing, Supervision, Project administration, Methodology,
Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors acknowledge the support from the National Natural
Science Foundation of China (Grants No. 12302294 and 12432010).

Appendix. Numerical schemes

We present several numerical schemes for solving the dynamics
equations outlined in Section 3. These schemes not only provide solu-
tions to the equations but also serve as templates for designing neural
networks. By incorporating these established methods, the neural net-
works are able to learn and replicate the dynamics more effectively.
This approach ensures that the networks maintain the stability and
accuracy of the original schemes, while also offering greater flexibility
and adaptability in addressing complex problems.
9
RK method. To solve Eq. (5) numerically, it is often rewritten in an
augmented form:
[

𝑴 𝑪𝑿
𝑪T

𝑿 𝟎

] [

𝑿̈
𝜼

]

=
[

𝑸𝑙 −𝑸𝑣 −𝑲𝑿
𝑸𝑐

]

. (A.1)

In this formulation, 𝑸𝑐 represents the constraint force [48]. By defining
the vector 𝒚 = [𝒚T1 , 𝒚

T
2 , 𝒚

T
3]
T with 𝒚1 = 𝑿̇, 𝒚2 = 𝜼, and 𝒚3 = 𝑿, Eq. (A.1)

can be expressed in the general form of an ODE:

d𝒚
d𝑡 =

⎧

⎪

⎨

⎪

⎩

[

𝑴 𝑪𝑿
𝑪T

𝑿 𝟎

]−1 [𝑸𝑙 −𝑸𝑣 −𝑲𝑿
𝑸𝑐

]

𝒚1

⎫

⎪

⎬

⎪

⎭

▵
= 𝒇 (𝑡, 𝒚), (A.2)

with the initial condition 𝒚(𝑡0) = [𝑿̇T
0 , 𝟎

T,𝑿T
0]
T.

The first-order Runge–Kutta (RK) method, commonly known as the
Euler method, updates the state vector 𝒚 by advancing in the direction
of 𝒇 (𝑡, 𝒚) over a timestep d𝑡. The updated state at 𝑡 + d𝑡 is given by:
𝒚(𝑡 + d𝑡) = 𝒚(𝑡) + 𝒇 (𝑡, 𝒚) ⋅ d𝑡. (A.3)

While it is straightforward and effective for simple problems, it may
not provide sufficient accuracy for problems requiring high precision
over extended periods.

The fourth-order RK method, or RK4, calculates the next state
by averaging the derivatives evaluated at multiple points within the
timestep d𝑡. The updated state at 𝑡 + d𝑡 is given by:

𝒚(𝑡 + d𝑡) = 𝒚(𝑡) + d𝑡
6
(𝒌1 + 2𝒌2 + 2𝒌3 + 𝒌4), (A.4)

where the increments [𝒌1,𝒌2,𝒌3,𝒌4] are defined as:
[

𝒇 (𝑡, 𝒚),𝒇
(

𝑡 + d𝑡
2
, 𝒚 +

𝒌1d𝑡
2

)

,𝒇
(

𝑡 + d𝑡
2
, 𝒚 +

𝒌2d𝑡
2

)

,𝒇 (𝑡 + d𝑡, 𝒚 + 𝒌3d𝑡)
]

.

(A.5)

RK4 achieves a global error of 𝑂(d𝑡4), providing high accuracy that is
suitable for a wide range of applications.
Symplectic integrator. For Hamiltonian systems described by (7), the
traditional RK method can be refined to better preserve the geometric
symmetries inherent to Hamiltonian ODEs. If the Hamiltonian system
is separable, meaning that  = 𝑇 (𝒑) + 𝑉 (𝒒), it can be expressed as:
d𝒒
d𝑡 =

𝜕𝑇 (𝒑)
𝜕𝒑

,
d𝒑
d𝑡 = −

𝜕𝑉 (𝒒)
𝜕𝒒

. (A.6)

A fourth-order symplectic integrator updates the momentum 𝒑 and
position 𝒒 over a time step d𝑡 as follows: the momentum is updated

J. Tang et al. Neurocomputing 637 (2025) 130122
Fig. A.11. Numerical integration results using a symplectic integrator (A.11) for the system  = (𝑞2 + 1)(𝑝2 + 1)∕2 over 𝑡 = 0 to 𝑡 = 20000 for different 𝜔 values: (a) 𝜔 = 0, (b)
𝜔 = 0.95, and (c) 𝜔 = 100.
by 𝒑 − 𝑑𝑗𝛁𝑉 (𝒒) ⋅ d𝑡, and the position is updated by 𝒒 + 𝑐𝑗𝛁𝑇 (𝒑) ⋅ d𝑡 for
𝑗 = 1, 2, 3, 4. The coefficients 𝑐𝑗 and 𝑑𝑗 are selected to minimize lower-
order error terms, ensuring fourth-order accuracy. These coefficients
are given by [58]:

𝑐1 = 𝑐4 =
1

2(2 − 21∕3)
, 𝑐2 = 𝑐3 =

1 − 21∕3

2(2 − 21∕3)
,

𝑑1 = 𝑑3 =
1

2 − 21∕3
, 𝑑2 = − 21∕3

2 − 21∕3
, 𝑑4 = 0.

(A.7)

By applying these updates at each time step d𝑡, the system can be
iteratively advanced from the initial state (𝒒0,𝒑0) at time 𝑡0 to the state
(𝒒𝑛,𝒑𝑛) at time 𝑡0 + 𝑛d𝑡, where 𝑛 denotes the number of time steps.

For a more general Hamiltonian system that is not separable, Tao
[55] proposed a high-order, explicit, and symplectic time integrator.
This method involves an augmented Hamiltonian defined as:
(𝒒,𝒑,𝒙, 𝒚) ∶= 𝐴 +𝐵 + 𝜔𝐶 , (A.8)

where the terms 𝛥(𝛥 = 𝐴,𝐵, 𝐶) are defined as:

𝐴 = (𝒒, 𝒚), 𝐵 = (𝒙,𝒑), 𝐶 = 1
2
(

‖𝒒 − 𝒙‖22 + ‖𝒑 − 𝒚‖22
)

, (A.9)

and 𝜔 is a constant that controls the interaction between the origi-
nal Hamiltonian system and an artificial constraint. The Hamiltonian
equations for this augmented Hamiltonian are:

⎧

⎪

⎨

⎪

⎩

d𝒒
d𝑡 = 𝜕

𝜕𝒑 = 𝜕(𝒙,𝒑)
𝜕𝒑 + 𝜔(𝒑 − 𝒚), d𝒑

d𝑡 = − 𝜕
𝜕𝒒 = − 𝜕(𝒒,𝒚)

𝜕𝒒 − 𝜔(𝒒 − 𝒙),

d𝒙
d𝑡 = 𝜕

𝜕𝒚 = 𝜕(𝒒,𝒚)
𝜕𝒚 − 𝜔(𝒑 − 𝒚), d𝒚

d𝑡 = − 𝜕
𝜕𝒙 = − 𝜕(𝒙,𝒑)

𝜕𝒙 + 𝜔(𝒒 − 𝒙),

(A.10)

with the initial condition (𝒒,𝒑,𝒙, 𝒚)|𝑡=𝑡0 = (𝒒0,𝒑0, 𝒒0,𝒑0). These equa-
tions have the same solution as (7) in the sense that (𝒒,𝒑,𝒙, 𝒚) =
(𝒒,𝒑, 𝒒,𝒑). The coefficient 𝜔 acts as a regularizer, thereby enhancing
the stability of the numerical results.

High-order symplectic integrators can be constructed for  with
explicit updates. Specifically, (𝒒,𝒑,𝒙, 𝒚) can be updated as follows:

(𝒒𝑖,𝒑𝑖,𝒙𝑖, 𝒚𝑖) = 𝝓d𝑡∕21 ◦𝝓d𝑡∕22 ◦𝝓d𝑡3 ◦𝝓d𝑡∕22 ◦𝝓d𝑡∕21 ◦(𝒒𝑖−1,𝒑𝑖−1,𝒙𝑖−1, 𝒚𝑖−1),

(A.11)

where 𝝓𝛿
1(𝒒,𝒑,𝒙, 𝒚), 𝝓𝛿

2(𝒒,𝒑,𝒙, 𝒚), and 𝝓𝛿
3(𝒒,𝒑,𝒙, 𝒚) are defined as:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒒

𝒑 − 𝛿[𝜕(𝒒, 𝒚)∕𝜕𝒒]

𝒙 + 𝛿[𝜕(𝒒, 𝒚)∕𝜕𝒚]

𝒚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒒 + 𝛿[𝜕(𝒙,𝒑)∕𝜕𝒑]

𝒑

𝒙

𝒚 − 𝛿[𝜕(𝒙,𝒑)∕𝜕𝒙]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, and 1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝒒 + 𝒙

𝒑 + 𝒚

⎞

⎟

⎟

⎠

+𝑹𝛿
⎛

⎜

⎜

⎝

𝒒 − 𝒙

𝒑 − 𝒚

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝒒 + 𝒙

𝒑 + 𝒚

⎞

⎟

⎟

⎠

−𝑹𝛿
⎛

⎜

⎜

⎝

𝒒 − 𝒙

𝒑 − 𝒚

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(A.12)

respectively. Here

𝑹𝛿 ∶=
[

cos(2𝜔𝛿)𝑰 sin(2𝜔𝛿)𝑰
]

, (A.13)

− sin(2𝜔𝛿)𝑰 cos(2𝜔𝛿)𝑰

10
where 𝑰 is the identity matrix. We remark that 𝒙 and 𝒚 are auxiliary
variables theoretically equal to 𝒒 and 𝒑.

Even if (𝒒,𝒑) is integrable, 𝐴 +𝐵 in the extended phase space
(𝒒,𝒑,𝒙, 𝒚) may not be integrable without binding (𝜔 = 0). As 𝜔
increases, the phase space for  becomes more regular [59]. Fig. A.11
shows trajectories from [−3, 0,−3, 0] using a second-order symplectic
integrator for the Hamiltonian (𝑞, 𝑝) = 1

2 (𝑞
2 + 1)(𝑝2 + 1). Increasing 𝜔

reduces the chaotic region, leading to a stable limit cycle.
Roe solver. Roe [60] introduced an approximate Riemann solver for
hyperbolic conservation laws using the Godunov scheme. This solver
estimates the numerical flux 𝑭 at interfaces between neighboring cells
in a discretized space–time domain. In one dimension, Roe discretizes
(8) as

𝒖𝑛+1𝑗 = 𝒖𝑛𝑗 − 𝜆𝑟

(

𝑭̂ 𝑛
𝑗+ 1

2
− 𝑭̂ 𝑛

𝑗− 1
2

)

, (A.14)

where 𝜆𝑟 = 𝛥𝑡∕𝛥𝑥 is the ratio of the temporal step size 𝛥𝑡 to the spatial
step size 𝛥𝑥, 𝑗 = 1,… , 𝑁𝑔 is the grid node index, and

𝑭̂ 𝑛
𝑗+ 1

2
= 𝑭̂ (𝒖𝑛𝑗 , 𝒖

𝑛
𝑗+1) (A.15)

with
𝑭̂ (𝒖, 𝒗) = 1

2
[

𝑭 (𝒖) + 𝑭 (𝒗) − |𝑨̃(𝒖, 𝒗)|(𝒗 − 𝒖)
]

. (A.16)

Designing an effective Roe solver depends on ensuring that the Roe
matrix 𝑨̃ meets three conditions: diagonalizability with real eigenval-
ues 𝑨̃ = 𝑳−1𝜦𝑳, where 𝑳 is invertible and 𝜦 = diag(𝛬1,… , 𝛬𝑁𝑐

) is a di-
agonal matrix; consistency with the Jacobian, lim𝒖𝑗 ,𝒖𝑗+1→𝒖 𝑨̃(𝒖𝑗 , 𝒖𝑗+1) =
𝜕𝑭 (𝒖)∕𝜕𝒖; and preservation of the conservation law for the phys-
ical quantity 𝒖 across cell interfaces: 𝑭 𝑗+1 − 𝑭 𝑗 = 𝑨̃(𝒖𝑗+1 − 𝒖𝑗).
Substituting Eqs. (A.15), (A.16), and |𝑨̃| = 𝑳−1

|𝜦|𝑳, where |𝜦| =
diag(|𝛬1|,… , |𝛬𝑁𝑐

|), into Eq. (A.14) along with the third Roe condition
yields

𝒖𝑛+1𝑗 =𝒖𝑛𝑗 −
1
2
𝜆𝑟[(𝑳𝑛

𝑗+ 1
2
)−1(𝜦𝑛

𝑗+ 1
2
− |𝜦𝑛

𝑗+ 1
2
|)𝑳𝑛

𝑗+ 1
2
(𝒖𝑛𝑗+1 − 𝒖𝑛𝑗)

+ (𝑳𝑛
𝑗− 1

2
)−1(𝜦𝑛

𝑗− 1
2
+ |𝜦𝑛

𝑗− 1
2
|)𝑳𝑛

𝑗− 1
2
(𝒖𝑛𝑗 − 𝒖𝑛𝑗−1)],

(A.17)

with
𝑳𝑛
𝑗+ 1

2
= 𝑳(𝒖𝑛𝑗 , 𝒖

𝑛
𝑗+1), 𝜦𝑛

𝑗+ 1
2
= 𝜦(𝒖𝑛𝑗 , 𝒖

𝑛
𝑗+1). (A.18)

Eq. (A.17) describes the evolution from 𝒖𝑛𝑗 to 𝒖𝑛+1𝑗 in the Roe solver
framework.

Lagrangian vortex method (LVM). The LVM discretizes (9) using 𝑁
particles, transforming it into a system of ODEs governing both the
strengths 𝜞 = {𝜞 𝑖 ∣ 𝑖 = 1,… , 𝑁} and positions 𝑿 = {𝑿𝑖 ∣ 𝑖 = 1,… , 𝑁}:
d𝜞 𝑖
d𝑡 = 𝜸𝑖,

d𝑿𝑖
d𝑡 = 𝒖𝑖 + 𝒗𝑖. (A.19)

Here, 𝜞 𝑖 represents the particle strength, derived as the integral of
𝝎 over the 𝑖th computational element, and 𝒖 is the induced velocity
𝑖

J. Tang et al. Neurocomputing 637 (2025) 130122
calculated by the Biot–Savart (BS) law. Additionally, 𝜸𝑖 and 𝒗𝑖 denote
the change rate of particle strength and drift velocity [61].

Data availability

Data will be made available on request.

References

[1] E. Weinan, The dawning of a new era in applied mathematics, Notices Amer.
Math. Soc. 68 (2021) 565–571.

[2] S. Brunton, J. Kutz, Data-Driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control, Cambridge University Press, 2022.

[3] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Netw.
61 (2015) 85–117.

[4] G. Karniadakis, I. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang,
Physics-informed machine learning, Nat. Rev. Phys. 3 (2021) 422–440.

[5] C. Udriste, M. Ferrara, D. Zugrăvescu, F. Munteanu, Controllability of a
nonholonomic macroeconomic system, J. Optim. Theory Appl. 154 (2012)
1036–1054.

[6] C. Udriste, M. Ferrara, Multitime models of optimal growth, WSEAS Trans. Math.
7 (2008) 51–55.

[7] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni-
tion, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognitionn, 2016, pp. 770–778.

[8] R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential
equations, in: Conference on Neural Information Processing Systems, 2018.

[9] J. Ma, S. Dong, G. Chen, P. Peng, L. Qian, A data–driven normal contact force
model based on artificial neural network for complex contacting surfaces, Mech.
Syst. Signal Proc. 156 (2021) 107612.

[10] A. Frankel, C. Hamel, D. Bolintineanu, K. Long, S. Kramer, Machine learning
constitutive models of elastomeric foams, Comput. Method Appl. Mech. Eng.
391 (2022) 114492.

[11] F. Masi, I. Stefanou, P. Vannucci, V. Maffi-Berthier, Thermodynamics-based
artificial neural networks for constitutive modeling, J. Mech. Phys. Solids 147
(2021) 104277.

[12] L. Zhang, L. Cheng, H. Li, J. Gao, C. Yu, R. Domel, Y. Yang, S. Tang, W. Liu,
Hierarchical deep–learning neural networks: finite elements and beyond, Comput.
Mech. 67 (2021) 207–230.

[13] S. Saha, Z. Gan, L. Cheng, J. Gao, O. Kafka, X. Xie, H. Li, M. Tajdari, H.
Kim, W. Liu, Hierarchical deep learning neural network (HiDeNN): An artificial
intelligence (AI) framework for computational science and engineering, Comput.
Method Appl. Mech. Eng. 373 (2021) 113452.

[14] Y. Liu, C. Park, Y. Lu, S. Mojumder, W. Liu, D. Qian, HiDeNN-FEM: a seamless
machine learning approach to nonlinear finite element analysis, Comput. Mech.
72 (2023) 173–194.

[15] M. Huang, Z. Du, C. Liu, Y. Zheng, T. Cui, Y. Mei, X. Li, X. Zhang, X. Guo,
Problem-independent machine learning (PIML)-based topology optimization-A
universal approach, Extrem. Mech. Lett. 56 (2022) 101887.

[16] M. Huang, T. Cui, C. Liu, Z. Du, J. Zhang, C. He, X. Guo, A problem-independent
machine learning (PIML) enhanced substructure-based approach for large-scale
structural analysis and topology optimization of linear elastic structures, Extrem.
Mech. Lett. 63 (2023) 102041.

[17] S. Greydanus, M. Dzamba, J. Yosinski, Hamiltonian neural networks, in: Pro-
ceedings of the 33rd International Conference on Neural Information Processing
Systems, 2019.

[18] Z. Chen, J. Zhang, M. Arjovsky, L. Bottou, Symplectic recurrent neural networks,
in: International Conference on Learning Representations, 2020.

[19] D. DiPietro, S. Xiong, B. Zhu, Sparse symplectically integrated neural networks,
in: Advances in Neural Information Processing Systems, 2020.

[20] A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia, Hamiltonian graph
networks with ODE integrators, 2019, arXiv:1909.12790.

[21] P. Battaglia, R. Pascanu, M. Lai, D.J. Rezende, Interaction networks for learn-
ing about objects, relations and physics, in: Advances in Neural Information
Processing Systems, 29, 2016.

[22] P. Jin, Z. Zhang, A. Zhu, Y. Tang, G. Em Karniadakis, SympNets: Intrinsic
structure-preserving symplectic networks for identifying Hamiltonian systems,
Neural Netw. 132 (2020) 166–179.

[23] P. Toth, D. Rezende, A. Jaegle, S. Racaniére, A. Botev, I. Higgins, Hamiltonian
generative networks, in: International Conference on Learning Representations,
2020.

[24] Y. Zhong, B. Dey, A. Chakraborty, Symplectic ODE-Net: learning Hamiltonian
dynamics with control, in: International Conference on Learning Representations,
2020.

[25] B. Daniels, I. Nemenman, Automated adaptive inference of phenomenological
dynamical models, Nat. Commun. 6 (2015) 8133.
11
[26] J. Wang, J. Wu, H. Xiao, Physics-informed machine learning approach for
reconstructing Reynolds stress modeling discrepancies based on DNS data, Phys.
Rev. Fluids 2 (2017) 034603.

[27] J. Hammond, F. Montomoli, M. Pietropaoli, R. Sandberg, V. Michelassi, Machine
learning for the development of data-driven turbulence closures in coolant
systems, J. Turbomach. 144 (2022) 081003.

[28] X. Xu, F. Waschkowski, A. Ooi, R. Sandberg, Towards robust and accurate
Reynolds-averaged closures for natural convection via multi-objective CFD-driven
machine learning, Int. J. Heat Mass Transfer 187 (2022) 122557.

[29] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[30] D. Zhang, L. Guo, G. Karniadakis, Learning in modal space: solving time-
dependent stochastic PDEs using physics-informed neural networks, SIAM J. Sci.
Comput. 42 (2019) A639–A665.

[31] C. Michoski, M. Milosavljevic, T. Oliver, D. Hatch, Solving differential equations
using deep neural networks, Neurocomputing 399 (2019) 193–212.

[32] Z. Mao, A. Jagtap, G. Karniadakis, Physics-informed neural networks for
high-speed flows, Comput. Method Appl. Mech. Eng. 360 (2020) 112789.

[33] M. Raissi, A. Yazdani, G. Karniadakis, Hidden fluid mechanics: Learning velocity
and pressure fields from flow visualizations, Science 367 (2020) 1026–1030.

[34] K. Lye, S. Mishra, D. Ray, Deep learning observables in computational fluid
dynamics, J. Comput. Phys. 410 (2020) 109339.

[35] A. Mohan, N. Lubbers, M. Chertkov, D. Livescu, Embedding hard physical
constraints in neural network coarse-graining of three-dimensional turbulence,
Phys. Rev. Fluids 8 (2023) 014604.

[36] M. Milano, P. Koumoutsakos, Neural network modeling for near wall turbulent
flow, J. Comput. Phys. 182 (2002) 1–26.

[37] K. Duraisamy, G. Iaccarino, H. Xiao, Turbulence modeling in the age of data,
Annu. Rev. Fluid Mech. 51 (2019) 357–377.

[38] X. Yang, S. Zafar, J. Wang, H. Xiao, Predictive large-eddy-simulation wall
modeling via physics-informed neural networks, Phys. Rev. Fluids 4 (2019)
034602.

[39] X. Huang, X. Yang, R. Kunz, Wall-modeled large-eddy simulations of spanwise ro-
tating turbulent channels—Comparing a physics-based approach and a data-based
approach, Phys. Fluids 31 (2019) 125105.

[40] Y. Bin, L. Chen, G. Huang, X. Yang, Progressive, extrapolative machine learning
for near-wall turbulence modeling, Phys. Rev. Fluids 7 (2022) 084610.

[41] J. Tang, L. Qian, J. Ma, L. Chen, G. Chen, Z. Chen, W. Huang, Knowledge-
dominated and data-driven rigid-flexible coupling dynamics for rotating flexible
structure, Know.- Based Systs. 296 (2024) 111853.

[42] Y. Tong, S. Xiong, X. He, G. Pan, B. Zhu, Symplectic neural networks in taylor
series form for Hamiltonian systems, J. Comput. Phys. 437 (2021) 110325.

[43] S. Xiong, Y. Tong, X. He, S. Yang, C. Yang, B. Zhu, Nonseparable symplectic
neural networks, in: International Conference on Learning Representations, 2021.

[44] Y. Tong, S. Xiong, X. He, S. Yang, Z. Wang, R. Tao, R. Liu, B. Zhu, RoeNet:
Predicting discontinuity of hyperbolic systems from continuous data, Internat. J.
Numer. Methods Engrg. 125 (2024) e7406.

[45] S. Xiong, X. He, Y. Tong, Y. Deng, B. Zhu, Neural vortex method: From finite
Lagrangian particles to infinite dimensional Eulerian dynamics, Comput. & Fluids
258 (2023) 105811.

[46] A. Shabana, Dynamics of Multibody Systems, Cambridge University Press, New
York, 2020.

[47] Q. Peng, M. Li, Comparison of finite element methods for dynamic analysis about
rotating flexible beam, Nonlinear Dynam. 111 (2023) 13753–13779.

[48] J. Tang, L. Qian, L. Chen, G. Chen, Y. Li, Flexible multibody dynamic analysis
of shells with an edge center-based strain smoothing MITC method, Nonlinear
Dynam. 111 (2023) 3253–3277.

[49] A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow, Cambridge
University Press, 2001.

[50] H. Helmholtz, Uber integrale der hydrodynamischen Gleichungen welche den
Wirbel-bewegungen ensprechen, J. Reine Angew. Math. 55 (1858) 25–55.

[51] Y. Yang, D. Pullin, On Lagrangian and vortex-surface fields for flows with
Taylor–Green and Kida–Pelz initial conditions, J. Fluid Mech. 661 (2010)
446–481.

[52] S. Xiong, Y. Yang, The boundary-constraint method for constructing
vortex-surface fields, J. Comput. Phys. 339 (2017) 31–45.

[53] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified,
real-time object detection, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognitionn, 2016.

[54] T. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object
detection, IEEE Trans. Vis. Comput. Graphics (2017) 2980–2988.

[55] M. Tao, Explicit symplectic approximation of nonseparable Hamiltonians:
Algorithm and long time performance, Phys. Rev. E 94 (2016) 043303.

[56] Z. Qu, X. Zhang, M. Gao, C. Jiang, B. Chen, Efficient and conservative fluids
using bidirectional mapping, ACM Trans. Graph. 38 (2019) 4.

[57] T. Hughes, I. Williamson, M. Minkov, S. Fan, Wave physics as an analog recurrent
neural network, Sci. Adv. 5 (2019) 6946.

[58] E. Forest, R. Ruth, Fourth-order symplectic integration, Phys. D 43 (1990)
105–117.

http://refhub.elsevier.com/S0925-2312(25)00794-5/sb1
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb1
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb1
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb2
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb2
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb2
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb3
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb3
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb3
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb4
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb4
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb4
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb5
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb5
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb5
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb5
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb5
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb6
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb6
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb6
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb7
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb7
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb7
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb7
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb7
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb8
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb8
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb8
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb9
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb9
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb9
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb9
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb9
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb10
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb10
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb10
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb10
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb10
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb11
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb11
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb11
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb11
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb11
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb12
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb12
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb12
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb12
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb12
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb13
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb13
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb13
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb13
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb13
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb13
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb13
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb14
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb14
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb14
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb14
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb14
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb15
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb15
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb15
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb15
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb15
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb16
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb17
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb17
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb17
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb17
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb17
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb18
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb18
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb18
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb19
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb19
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb19
http://arxiv.org/abs/1909.12790
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb21
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb21
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb21
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb21
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb21
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb22
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb22
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb22
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb22
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb22
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb23
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb23
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb23
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb23
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb23
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb24
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb24
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb24
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb24
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb24
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb25
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb25
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb25
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb26
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb26
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb26
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb26
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb26
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb27
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb27
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb27
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb27
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb27
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb28
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb29
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb29
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb29
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb29
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb29
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb30
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb30
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb30
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb30
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb30
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb31
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb31
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb31
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb32
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb32
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb32
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb33
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb33
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb33
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb34
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb34
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb34
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb35
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb35
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb35
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb35
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb35
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb36
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb36
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb36
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb37
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb37
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb37
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb38
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb38
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb38
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb38
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb38
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb39
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb39
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb39
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb39
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb39
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb40
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb40
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb40
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb41
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb42
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb42
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb42
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb43
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb43
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb43
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb44
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb44
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb44
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb44
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb44
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb45
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb45
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb45
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb45
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb45
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb46
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb46
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb46
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb47
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb48
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb48
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb48
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb48
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb48
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb49
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb49
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb49
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb50
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb50
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb50
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb51
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb51
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb51
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb51
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb51
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb52
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb52
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb52
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb53
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb53
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb53
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb53
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb53
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb54
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb54
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb54
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb55
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb55
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb55
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb56
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb56
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb56
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb57
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb57
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb57
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb58
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb58
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb58

J. Tang et al. Neurocomputing 637 (2025) 130122
[59] A. Kolmogorov, On the conservation of conditionally periodic motions under
small perturbation of the Hamiltonian, Dokl. Akad. Nauk SSSR 98 (1954)
527–530.

[60] P. Roe, Approximate riemann solvers, parameter vectors and difference schemes,
J. Comput. Phys. 43 (1981) 357–372.

[61] J. Hao, S. Xiong, Y. Yang, Tracking vortex surfaces frozen in the virtual velocity
in non-ideal flows, J. Fluid Mech. 863 (2019) 513–544.

Jinsong Tang received his Ph.D. in engineering from
Nanjing University of Science and Technology, Nanjing,
China, in 2024. He is now a postdoctoral fellow at Zhe-
jiang University majoring in Mechanics, and his research
interests include flexible manipulator dynamics, data-driven
computational mechanics.

Yunjin Tong received her B.A. degree in Mathematics and
Computer Science from Dartmouth College in 2024. She is
now a Ph.D. student at Stanford Graduate School of Business
in Operations Information and Technology. Her research
focuses on machine learning, environmental impact of AI
and data centers, and computer simulation.
12
Chen Lihua received her B.Eng degree from the Xi’an
Jiaotong University in 1994 and Ph.D. degree from Zhejiang
University, China, in 1999. She is now an associate professor
at Zhejiang University majoring in fluid mechanics. Her
research interests include heat transfer, energy storage and
conversion,computational flow dynamics.

Shengze Cai received the B.Sc. and the Ph.D. degrees
from Zhejiang University, Hangzhou, China, in 2014 and
2019, respectively. He is currently a tenure-track assistant
professor with the College of Control Science and Engineer-
ing, Zhejiang University (ZJU). Prior to joining ZJU, he
was a Post-Doctoral Research Associate with the Division
of Applied Mathematics, Brown University, Providence, RI,
USA. His research interests include scientific machine learn-
ing, control and optimization as well as flow visualization
techniques.

Shiying Xiong received his B.S. in Physics from Jilin
University (2014) and Ph.D. in Fluid Mechanics from Peking
University (2019). He was a postdoctoral researcher at
Dartmouth College and briefly at HKUST (2019–2022).
Currently, he is an Assistant Professor at Zhejiang Univer-
sity, focusing on vortex dynamics, interfacial dynamics, and
scientific machine learning.

http://refhub.elsevier.com/S0925-2312(25)00794-5/sb59
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb59
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb59
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb59
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb59
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb60
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb60
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb60
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb61
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb61
http://refhub.elsevier.com/S0925-2312(25)00794-5/sb61

	Integrating neural networks with numerical schemes for dynamical systems: A review
	Introduction
	Residual networks and neural ordinary differential equations
	Dynamics equations
	Rigid–flexible coupling dynamics
	Hamiltonian dynamics
	Hyperbolic conservation laws
	Vortex dynamics

	Neural networks based on numerical schemes
	Data-driven numerical integration networks
	Symplectic neural networks
	Roe neural networks
	Neural vortex method

	Numerical results
	Data-driven numerical integration networks
	Symplectic Taylor neural networks
	Nonseparable symplectic neural networks
	Roe neural networks
	Neural vortex method

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Numerical schemes
	Data availability
	References

