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We propose an analytical approach based on the Frenet–Serret (FL) frame field,
where an FL frame and the corresponding curvature and torsion are defined at each
point along magnetic field lines, to investigate the evolution of magnetic tubes and
their interaction with vortex tubes in magnetohydrodynamics. Within this framework,
simplified expressions for the Lorentz force, its curl, the dynamics of flux tubes and helicity
are derived. We further perform direct numerical simulations on the linkage between the
magnetic and vortex tubes and investigate the effect of the initial angle θ , ranging from 0 ◦
to 45 ◦, on their evolution. Our results show that magnetic tubes with non-zero curvature
generate Lorentz forces, which in turn produce dipole vortices. These dipole vortices lead
to the splitting of the magnetic tubes into smaller structures, releasing magnetic energy.
Both magnetic and vortex tubes exhibit quasi-Lagrangian behaviour, maintaining similar
shapes during initial evolution and consistent relative positions over time. A vortex tube
with strength comparable to that of the magnetic tube, where the kinetic energy induced
by the vortex tube is of the same order as the magnetic energy in the magnetic tube, can
inhibit magnetic tube splitting by disrupting the formation of vortex dipoles. Additionally,
minor variations in the angular configuration of the vortex tubes significantly influence
their interaction with the magnetic field and the evolution of large-scale flow structures.

Key words: magnetic fluids, vortex dynamics, topological fluid dynamics

© The Author(s), 2025. Published by Cambridge University Press. 1009 A55-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-7533-7220
https://orcid.org/0000-0003-4571-2063
https://orcid.org/0000-0002-0468-4249
https://orcid.org/0000-0002-6201-5860
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.263&domain=pdf
https://doi.org/10.1017/jfm.2025.263


L. Kang and others

1. Introduction
Magnetohydrodynamics (MHD) serves as a methodological framework for analysing and
characterising the various properties of plasma (Kulsrud 1983; Makwana & Yan 2020;
Hoelzl et al. 2021). In MHD, the magnetic flux tube represents a region of concentrated
magnetic field lines confined within a distinct spatial boundary (Roberts & Webb 1978;
Davidson 2017; Toriumi & Hotta 2019). The examination of these flux tubes is crucial for
understanding magnetic field behaviour across various domains, including astrophysics
(Zhugzhda 2000; Yuan et al. 2019), engineering (Stuikys & Sykulski 2018; Tang et al.
2018) and space exploration (Levchenko et al. 2020; Bowers et al. 2021). Moreover,
magnetic flux tubes are essential for confining charged particles, such as electrons and
ions (Egedal et al. 2013; Porto et al. 2023), with implications for plasma dynamics in
fusion research (You et al. 2005; Effenberg et al. 2017) and solar physics (Fan 2008; Inoue
et al. 2018; Manek & Brummell 2021).

Magnetic flux tubes often give rise to complex topological structures such as knots or
links, as demonstrated by various studies (see Linton et al. 2001; Ricca & Maggioni 2014;
Hao & Yang 2021; Zhao & Scalo 2021). These structures are widely recognised as as being
part of the solar active zone (Lozitsky et al. 2000; Chelpanov et al. 2015; MacTaggart
et al. 2021). Beckers & Schröter (1968) investigated the structures of strong magnetic
fields, revealing that sunspot active regions can generate numerous magnetic knots. Further
exploration of the interactions between ascending flux tubes and magnetic knots on the
solar surface was provided by Parker (1978), offering insights into the dynamic process of
mutual attraction among magnetic knots within sunspot regions.

The evolution of magnetic flux tubes involves topological transformations, including
the breaking, rearrangement and reconnection of magnetic field lines (Ricca 1997;
Yamada et al. 2010; Özdemir 2021). When magnetic field lines become intertwined,
they self-organise into new magnetic configurations, driven by magnetic energy within
the plasma (Yin et al. 2008). This process often generates intense small-scale structures
and facilitates the conversion of magnetic energy near line intersections (Mininni et al.
2006). For instance, in Earth’s magnetosphere, magnetic reconnection enables interactions
between the planet’s magnetic field and the solar wind, leading to phenomena such
as geomagnetic storms (Gonzalez et al. 1994; Angelopoulos et al. 2020). Additionally,
theoretical insights into the topology of magnetic flux tubes have practical implications for
tokamak reactor design (Freidberg et al. 2015) and the development of magnetic energy
facilities (Domínguez-Lozoya et al. 2021).

We utilise the resistive model as an approximation to capture certain effects of
localised turbulence (Biskamp 1994). However, resistivity alone is insufficient to fully
describe turbulence effects in astrophysical systems such as the Sun, where external noise,
instabilities and nonlinear interactions influence reconnection dynamics (Somov & Kosugi
1997; Ren et al. 2005; Zweibel & Yamada 2009). While zero resistivity recovers the
ideal MHD equations, these equations fail to hold even for an infinitesimal resistivity.
Fast reconnection, observed in both laboratory and solar environments, occurs when
topological changes outpace resistive rates due to turbulence disrupting the frozen-flux
condition (Lazarian & Vishniac 1999; Ji et al. 2022), as even in the absence of noise,
a sharp current sheet becomes unstable and spontaneously generates turbulence, driving
rapid reconnection (Singh et al. 2006). Nevertheless, the resistive model offers a practical
approximation for certain aspects of magnetic field dynamics, particularly in modelling
geometric and topological changes such as tube splitting, where it provides a reasonable
description of relevant phenomena (Cassak et al. 2005).

We investigate the generation, evolution and energy release associated with the splitting
of magnetic flux tubes – a process wherein a single magnetic tube divides into two or
1009 A55-2
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more narrower tubes under specific conditions (Spruit & Roberts 1983). Although the role
of magnetic splitting in magnetic energy relaxation has been acknowledged in numerous
astronomical observations, quantitative studies of this phenomenon have only recently
emerged (see Dumin & Somov 2019; Xiong & Yang 2020a). Dumin & Somov (2020)
examined the topological instability behind magnetic splitting using the Gorbachev–
Kel’ner–Somov–Shvarts model, revealing that the splitting pattern is driven by the sudden
bifurcation-induced emergence of an additional null point. Another analytical approach
was developed by Xiong & Yang (2019a, 2020a) to construct flux tubes, which was
subsequently applied to the study of magnetic splitting. In Xiong & Yang (2020a),
the division of magnetic flux tubes is attributed to the Lorentz force, with this effect
diminishing as the twist increases. However, a comprehensive theory that fully explains
the underlying mechanisms of this phenomenon remains elusive.

We also highlight the influence of vortices on the evolution of magnetic fields (Berciu
et al. 2005). In the initial stages of evolution, untwisted magnetic tubes generally create
a mutually repulsive flow field due to Lorentz forces (Spicer 1982), leading to ongoing
splitting of the magnetic tubes and the formation of geometrically filamentary structures
commonly linked with magnetic helicity (Ricca 2013). This behaviour resembles the
geometric cascade observed in the helical vortex model (Lundgren 1982, 1993; Xiong
& Yang 2019b). However, vortices can disrupt the local flow field, thereby hindering
the relaxation of tightly constrained tubular structures into more dispersed floral
configurations (Goossens et al. 1995; Xiong & Yang 2020b).

This study employs direct numerical simulation (DNS) to investigate the dynamics of
magnetic tube evolution and the impact of vortices on MHD flows through their interaction
with magnetic fields. In the absence of vortex effects, magnetic tubes typically undergo
a topological splitting process as described by Dumin & Somov (2020). We study the
Lorentz forces within a Frenet–Serret (FS) frame field along magnetic field lines, aiming
to identify the primary factors influencing magnetic tube splitting. Owing to the quasi-
Lagrangian nature of magnetic and vortex tubes during their evolution, the motion of
vortex tubes initially aligns with that of magnetic tubes, resulting in a stable interaction
over time. Furthermore, the evolution of helicity demonstrates that magnetic helicity
and cross-helicity are conserved in the absence of viscosity, indicating an approximate
topological locking between magnetic and vortex lines.

When vortex tubes with relatively high vorticity strength intersect magnetic tubes
at a small angle, the proximity enables the vorticity to affect the splitting process
by destabilising the vortex dipoles induced by the Lorentz forces. This effect is also
evident in the evolution of magnetic energy, which can be divided into stretching and
dissipation components. The presence of vortex tubes typically promotes the elongation
and redistribution of magnetic field structures, inhibiting magnetic reconnection and
consequently reducing the release of magnetic energy. In contrast, the absence of vortex
tubes leads to increased magnetic energy release through the stretching term, promoting
magnetic tube splitting. Additionally, we investigate the impact of the angle between vortex
tubes and magnetic tubes on dynamic evolution. Our findings show that smaller angles
hinder the release of magnetic and kinetic energy, while larger angles facilitate magnetic
energy release, aiding in the relaxation of the magnetic field.

We observe that the evolution of magnetic tubes, driven by Lorentz forces, leads
to the formation of vortex tubes that nearly coincide with the magnetic structures,
thereby naturally motivating our configuration for studying magnetic–vortex interactions
in physical systems. The set-up, inspired by recent observations of vortex motions in
the solar atmosphere by Tziotziou et al. (2023), initialises the system with closely
co-located magnetic and vortex tubes. Although idealised, this configuration captures
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essential features of real-world magnetic–vortex interactions, establishing a foundation for
future investigations into the mutual influence of magnetic and vortex tubes under varying
conditions and advancing the understanding of more complex MHD flows.

The paper is organised as follows. Section 2 presents the governing equations for MHD
flows and describes the numerical simulation using pseudo-spectral methods, including
the configuration of our case studies. Section 3 analyses the morphology and dynamics
of magnetic and vortical structures in the flow, aiming to elucidate the mechanisms of
magnetic tube splitting through the FS frame field and the role of quasi-Lagrangian
dynamics in maintaining stability. In § 4, we discuss the influence of vortex dynamics on
the evolution of MHD flows, emphasising the sensitivity of tubular structures to dynamic
variations. Section 5 concludes with a summary of the findings and recommendations for
future research.

2. Direct numerical simulation of MHD

2.1. Numerical methods
We solve the MHD equations (see Priest & Forbes 2000) as follows:⎧⎪⎪⎨

⎪⎪⎩
∂u
∂t

+ u · ∇u = − 1
ρ

∇ p + 1
ρ

FL + νk∇2u, ∇ · u = 0,

∂b
∂t

= ∇ × (u × b) + νm∇2b, ∇ · b = 0.

(2.1)

In this system, u, b, p, ρ, t , νk and νm represent the velocity, magnetic induction,
pressure, mass density, time, kinematic viscosity and magnetic diffusivity, respectively.
The magnetic induction b is referred to as the magnetic field in this study, although strictly
speaking, the magnetic field in vacuum is given by H = b/μ0, where μ0 denotes the
magnetic permeability of free space with a value of 4π × 10−7 H m−1. The Lorentz force,
FL , is given by

FL ≡ j × b, (2.2)

where j is the current density, related to the magnetic induction b through Ampère’s law:
j = ∇ × b/μ0. The fluid is assumed to be incompressible, with a constant density ρ. We
set νk = νm , which results in a magnetic Prandtl number, Prm , of unity, defined as the ratio
of kinematic viscosity to magnetic diffusivity (Hasimoto 1959). This choice simplifies
the MHD system, facilitating both mathematical analysis and numerical simulations,
particularly in qualitative studies (Linton et al. 2001; Kivotides 2018).

We adopt the dimensionless form of (2.1), maintaining the original form of the variables
for simplicity. We perform numerical simulations of MHD flows within a periodic cube Ω

of side length L = 2π. The governing equation (2.1) is symmetrically reformulated using
the variables z± = u ± b, as introduced by Elsasser (1950). These equations are solved
with a pseudo-spectral method, following the approach of Aluie (2009), which provides
highly accurate computation of spatial derivatives through Fourier transformations. To
reduce aliasing errors, we use the two-thirds truncation method, with a maximum
wavenumber kmax ≈ N/3. Time integration of the Fourier coefficients is carried out using
a second-order Runge–Kutta scheme, with the time step chosen to maintain the Courant–
Friedrichs–Lewy number below 0.5 for numerical stability. The accuracy of our MHD
solver has been validated in previous studies, as cited in Hao et al. (2019), Xiong &
Yang (2020a) and Hao & Yang (2021). Details of grid convergence testing are provided in
Appendix A.
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Sc: the plane spanned by N and B
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Figure 1. Schematic diagram showing the relationship between the intrinsic coordinates (s, �, ϑ) and the
Cartesian coordinates (x, y, z). The flux tube is outlined in light blue, with its central axis indicated in
yellow-green. The cross-sectional view of the flux tube is enclosed by an orange dashed line.

We investigate the interaction between magnetic and vortical flux tubes using
the methodology of Xiong & Yang (2019a, 2020a). The initial conditions include
tubular structures derived from a continuous, differentiable curve C : x = c(s) in three-
dimensional space R

3, parametrised by arc length s ∈ [0, LC ), where LC is the length
of the curve. In figure 1, the spatial coordinates x = (x, y, z) are expressed in the FS
frame as x = c(s) + � cos ϑ N + � sin ϑ B, where T ≡ dc/ds is the unit tangent vector,
N ≡ (dT/ds)/(|dT/ds|) is the unit normal vector and B ≡ T × N is the unit binormal
vector. Here, � = |x − c| denotes the distance between c(s) and x, and ϑ ∈ [0, 2π) is the
angle in the plane defined by N and B from the unit normal vector to x. This configuration
positions curve C as the central axis of the flux tube.

In the coordinate system (s, �, ϑ), the flux tube formulation is given by (Xiong & Yang
2019a)

v(s, �, ϑ) = f (�)T , (2.3)

where the kernel function is f (�) = exp[−�2/(2σ 2)]/(2πσ 2) with σ = 1/(16
√

2π) ≈
0.025. The flux tube’s estimated radius Rv is approximately 5σ , encompassing over
99.999 % of the toroidal flux. We restrict v within Rv , ensuring no self-intersections as
long as Rv is smaller than the minimum curvature radius of the central axis C .

We express the initial magnetic field b in (2.1) using (2.3) as b = Γmv, where Γm
denotes the circulation of the initial magnetic tube. Similarly, the vorticity field is
given by ω = Γkv, with Γk representing the circulation of the initial vortex tube. To
obtain the velocity field u in (2.1), we solve ω = ∇ × u and ∇ · u = 0 using the Fourier
transform: u =F−1(i k × ω̂/|k|2), where F−1 denotes the inverse Fourier transform, k is
the wavenumber vector and ω̂ =F(ω) is the Fourier transform of the vorticity field.

2.2. Initial configurations
We generate the initial flux tubes as a pair of interconnected tubes. The parametric equation
c(ζ ) = [cx (ζ ), cy(ζ ), cz(ζ )] defines the axis of the first flux tube:⎧⎪⎨

⎪⎩
cx (ζ ) = π + [1 + 0.5 cos(2ζ )] cos(ζ ),

cy(ζ ) = π + [1 + 0.5 cos(2ζ )] sin(ζ ),

cz(ζ ) = π − 1.5 − 0.5 sin(2ζ ).

(2.4)

The axis of the second flux tube is obtained by rotating the curve from (2.4) clockwise
by π/2 around the line at (x, y) = (π, π). As a result, the initial configuration comprises
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(b)
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o

Figure 2. Isosurfaces of |b| and |ω| for (a) Lm Lk with θ = 0 ◦ and (b) Lm Lk with θ = 30 ◦.

two interconnected tubes, leading to scenarios where the magnetic and vortex tubes may
exhibit either right- or left-handed linkages. For simplicity, the arc length parameter for
curve C is not used in the above equation. Detailed formulas for computing the geometric
properties of curves using a generalised parameter format are provided in Appendix A of
Xiong & Yang (2020a).

We investigate various magnetic–vortex configurations, considering the presence or
absence of initial vorticity and magnetic fields. Specifically, we examine systems with
initial left-handed linkage (Lm Lk) and right-handed linkage (Rm Rk) for magnetic and
vortex tubes, as well as pure initial magnetic flow (Lm Ok, Rm Ok) and purely vortical flow
(Om Lk, Om Rk), resulting in four distinct reference categories. A right-handed linkage
indicates that the two interconnected closed flux tubes share the same orientation, whereas
a left-handed linkage implies that they have opposite orientations. While left-handed
and right-handed linkages provide a useful classification, the key determinant of their
dynamics in MHD flows lies in the relative spatial arrangement and interaction of the
tubes, particularly in relation to the alignment of the currents and the reconnection
behaviour. We also investigate how the initial angle between the magnetic and vortex
tubes influences flux tube evolution. In our notation, ‘R’ and ‘L’ represent flux tubes
with right-handed (positive linking number +2) and left-handed linkages (negative
linking number −2), respectively, while ‘O’ indicates the absence of corresponding flux
tubes. The subscripts ‘m’ and ‘k’ denote magnetic and kinematic vortex tubes, with ‘θ ’
specifying their relative angle.

Figure 2 shows isosurfaces of |ω| and |b| for various flux tube configurations,
highlighting their coherent and concentrated structures. This confirms the appropriateness
of the constructed flux links as initial conditions for DNS. Due to the short time scales
considered, the flow structure remains approximately centred within the computational
domain. The effect of periodic boundaries on the flow is minimal, given the distance-
squared decay of the velocity field as described by the Biot–Savart law.

Table 1 provides the parameters and statistics for representative initial flux tubes,
including the grid size N , which determines the simulation resolution. It also lists
several dimensionless parameters, including the kinetic Reynolds number Rek = Γk/νk ,
which characterises the relative dominance of inertial forces over viscous dissipation
in the kinetic field, and the magnetic Reynolds number Rem = Rek · Prm , which
quantifies the relative importance of inertial versus diffusive effects in the magnetic
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Case θ N Rek Rem Ek Em εk εm Hc Hm

Lm Lk 0 ◦ 512 861.4 861.4 5.0 5.0 55.29 332.03 −12.90 −3.08
0 ◦ 512 1722.8 1722.8 5.0 5.0 27.65 161.02 −12.90 −3.08
0 ◦ 1024 3445.6 3445.6 5.0 5.0 13.82 80.48 −12.90 −3.08
0 ◦ 1024 6891.2 6891.2 5.0 5.0 6.91 40.24 −12.90 −3.08
2 ◦ 512 1722.8 1722.8 5.0 5.0 27.65 161.02 −10.42 −3.08
4 ◦ 512 1722.8 1722.8 5.0 5.0 27.65 161.02 −5.71 −3.08

7.5 ◦ 512 1722.8 1722.8 5.0 5.0 27.65 161.02 −1.14 −3.08
15 ◦ 512 1722.8 1722.8 5.0 5.0 27.65 161.02 −0.009 −3.08

Rm Rk 0 ◦ 512 1722.8 1722.8 5.0 5.0 22.76 161.02 20.84 5.51

Lm Ok – 512 0.0 0.0 0.0 5.0 0.0 332.03 0.0 −3.08
– 512 0.0 0.0 0.0 5.0 0.0 161.02 0.0 −3.08
– 1024 0.0 0.0 0.0 5.0 0.0 80.48 0.0 −3.08
– 1024 0.0 0.0 0.0 5.0 0.0 40.24 0.0 −3.08

Rm Ok – 512 0.0 0.0 0.0 5.0 0.0 161.02 0.0 5.51

Om Lk – 512 1722.0 −− 5.0 0.0 27.65 0.00 0.00 0.00

Om Rk – 512 1722.0 −− 5.0 0.0 22.76 0.00 0.00 0.00

Table 1. Parameters and statistics for the initial configurations of selected simulations. Here R and L denote
right-handed and left-handed flux tubes with linking numbers +2 and −2, respectively. Subscripts m and k refer
to magnetic and kinematic vortex tubes, with θ specifying their angle. The initial fluxes are set to Γk = 17.228
and Γm = 1.036, ensuring equal initial magnetic and kinetic energy in simulations with both types of tubes.

field. Additionally, the table provides the kinetic energy Ek = ∑
k |û(k)|2/2 and magnetic

energy Em = ∑
k |b̂(k)|2/2, calculated by using Fourier coefficients b̂ =F(b) and û =

F(u). Additionally, it includes the kinetic dissipation rate εk = νk
∑

k(|k||û(k)|)2 and
magnetic dissipation rate εm = νm

∑
k(|k||b̂(k)|)2, which quantify the efficiency of the

energy dissipation mechanisms in the fluid and magnetic fields. Helicity statistics are also
provided, including cross-helicity Hc = ∫

Ω
u · b dΩ and magnetic helicity Hm = ∫

Ω
a ·

b dΩ , where a =F−1(i k × b̂/|k|2). Cross-helicity measures the correlation between the
velocity and magnetic fields, while magnetic helicity provides insight into the twist and
linkage of the magnetic field lines. For cases with vortex tubes, the initial vorticity flux,
Γk , is set to 17.228, while for cases with magnetic tubes, the initial magnetic flux, Γm , is
set to 1.036. This ensures that in simulations with both a magnetic tube and a vortex tube,
the initial magnetic energy of the magnetic tube equals the initial kinetic energy of the
vortex tube.

We investigate the evolution of magnetic tubes and their interactions with vortex tubes.
As shown in figure 3, a phenomenon observed is the splitting of magnetic tubes during
their evolution. This study systematically explores this process by integrating theoretical
analysis of the governing equations with a quantitative assessment of numerical results.
Specifically, vortex dynamics analysis is used to clarify the role of vortex tubes in magnetic
tube splitting.

Additionally, we observe that, in our numerical simulations involving both magnetic
and vortex tubes, the Lorentz force is substantially larger than the inertial force.
This relationship can be characterised by the interaction parameter NI = Γ 2

m/

[ρμ0 Rekνkνm(Rv)
2] = (Γ 2

m Rek)/ρμ0(Γk Rv)
2, which quantifies the balance between
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–20000

j · b

x

y

20000

Figure 3. Splitting of the magnetic tube for case Lm Ok with Rem = 414.4 at t = 0.0175. Integral curves of
b are coloured by the scalar field j · b. The right-hand subfigure provides a zoomed view of the dashed box
area from the left-hand subfigure.

B

N
T

Figure 4. Frenet–Serret frames generated by magnetic field lines. The unit tangent, normal and binormal
vectors are represented by black, blue and red arrows, respectively.

Lorentz and inertial forces in the system (Kivotides 2018, 2019). In the simulations
presented herein, NI � 1, and in this regime, the morphologies of the vorticity and
magnetic field structures exhibit notable similarity. This phenomenon is further explored
in the following sections and aligns with the observations of Kivotides (2018).

3. Magnetohydrodynamic flows in the FS frame field

3.1. The FS frame fields
To facilitate the analysis of dynamic flow fields, we extend the FS frame throughout the
flux tube domain. This FS frame is defined where the magnetic field and the curvature of
the magnetic lines are both non-zero, although it is important to note that inflexion points
may exist in realistic scenarios. Specifically, we define a FS coordinate system at each
point along the magnetic field lines, establishing a unit frame field [T (x), N(x), B(x)]
at locations where the magnetic field is non-zero, as depicted in figure 4. At each point c
along these magnetic lines, the vectors [T (c), N(c), B(c)] follow the FS formulas:

T · ∇T = κ N, T · ∇N = −κT + τ B, T · ∇B = −τ N. (3.1)

Here, κ and τ represent the curvature and torsion of the curve, respectively.
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Let T , N and B be column vectors that form an orthogonal matrix O = [T , N, B].
Utilising the properties of the matrix trace, for any matrix A, we have

Tr(A) = Tr(O−1 AO) = Tr(OT AO) = T T AT + NT AN + BT AB. (3.2)

Since T , N and B are unit vectors, and applying (3.2) and ∇ · A = Tr(∇ A), we obtain⎧⎪⎨
⎪⎩

∇ · T = T · ∇T · T + N · ∇T · N + B · ∇T · B = N · ∇T · N + B · ∇T · B,

∇ · N = T · ∇N · T + N · ∇N · N + B · ∇N · B = T · ∇N · T + B · ∇N · B,

∇ · B = T · ∇B · T + N · ∇B · N + B · ∇B · B = T · ∇B · T + N · ∇B · N.

(3.3)
Additionally, for three-dimensional vectors f and g, using

∇ × ( f × g) = −(∇ · f )g + (∇ · g) f + g · ∇ f − f · ∇g (3.4)

and (3.3), we obtain

∇ × T = ∇ × (N × B) = −(∇ · N)B + (∇ · B)N + B · ∇N − N · ∇B
= (N · ∇T · B − B · ∇T · N)T + (∇ · B + N · ∇N · B)N

+ (B · ∇N · B − ∇ · N)B
= (N · ∇T · B − B · ∇T · N)T + (T · ∇B · T )N − (T · ∇N · T )B.

(3.5)

Similarly, we have{
∇ × N = −(N · ∇B · N)T + (B · ∇N · T − T · ∇N · B)N + (N · ∇T · N)B,

∇ × B = (B · ∇N · B)T − (B · ∇T · B)N + (T · ∇B · N − N · ∇B · T )B.

(3.6)
Substituting (3.1) into (3.3), (3.5) and (3.6) yields⎧⎪⎨

⎪⎩
∇ · T = N · ∇T · N + B · ∇T · B,

∇ · N = −κ + B · ∇N · B,

∇ · B = N · ∇B · N
(3.7)

and ⎧⎪⎨
⎪⎩

∇ × T = (N · ∇T · B − B · ∇T · N)T + κ B,

∇ × N = −(N · ∇B · N)T − (τ + B · ∇T · N)N + (N · ∇T · N)B,

∇ × B = (B · ∇N · B)T − (B · ∇T · B)N + (N · ∇T · B − τ)B.

(3.8)

3.2. Lorentz force in the FS frame field
By aligning the FS frame with the magnetic field lines, the tangent vector T is made
parallel to the magnetic field. Within this coordinate system, we investigate the Lorentz
force acting on the magnetic tube and elucidate the mechanism underlying its splitting.

Using the FS frame field, the Lorentz force, as expressed in (2.2), can be represented as

FL = −∇b · b + b · ∇b = −1
2∇b2 + b(T · ∇b)T + κb2 N. (3.9)

Here, κ denotes the curvature of the magnetic lines. We remark that (T , B, N) and κ are
computed for each magnetic field line considered as a parametrised curve. Consequently,
these quantities define fields that are distributed throughout the flux tube. In Ricca (2005),
the Lorentz force is derived through the geometry of magnetic field lines, with a focus
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on their curvature and torsion. The study emphasises how the curvature of the magnetic
field lines contributes to the instability of flux tubes, particularly when inflection points
are present. Similarly, (3.9) provides a geometrical interpretation of the forces acting on
the flux tubes, highlighting the role of curvature in destabilising the magnetic structures.

Given the divergence-free property of the vector field b in (2.1), we arrive at the
following relation:

b∇ · T + T · ∇b = 0. (3.10)

Substituting (3.10) into (3.9) yields

FL = −1
2∇b2 + b2 [−(∇ · T )T + κ N] . (3.11)

We focus on the influence of the Lorentz force on vorticity evolution to elucidate the
vortex dynamics induced by MHD effects. To evaluate the vorticity evolution, we apply
the curl operator to the first equation in (2.1), yielding

Dω

Dt
= ω · ∇u + νk∇2ω + ∇ × FL . (3.12)

Here, D/Dt = ∂/∂t + u · ∇ represents the material derivative. This Lagrangian equation
describes the dynamics of vorticity during the shearing process. The vorticity generation
arises from the curl of the Lorentz force, which is induced by the magnetic field.

Taking the curl of (3.11) yields

∇ × FL = ∇ ×
{

b2 [−(∇ · T )T + κ N]
}

. (3.13)

Equation (3.13) reveals that the curl of the Lorentz force splits into two components: ∇ ×
FL = ωg + ωb. The first component, ωg , is defined as

ωg = b2∇ × [−(∇ · T )T + κ N] (3.14)

and is sensitive to the geometric configuration of the magnetic field lines. On the other
hand, the second component, ωb, is given by

ωb = (∇b2) × [−(∇ · T )T + κ N] (3.15)

and is sensitive to variations in magnetic intensity.
The splitting of the magnetic tube is noticeable in the early stages of its evolution.

During this phase, the Lorentz force is largely influenced by the initial magnetic field
configuration. Accordingly, we examine the initial condition described by (2.3), where the
helicity of the vector field is influenced by the writhe of the tube axis (Xiong & Yang
2019a). At this stage, the magnetic field lines have a relatively simple structure, which
allows for a more straightforward decomposition of the Lorentz force.

Within the flux tube of radius Rv , the flux lines corresponding to (2.3) are parallel, thus
satisfying

N · ∇T = B · ∇T = 0. (3.16)

Since ∇T is a second-order tensor, its contraction with vectors yields a vector. From (3.1)
and (3.16), we also derive the following system of equations:

B · ∇ (T · ∇T ) = 0, N · ∇ (T · ∇T ) = κ2 N, (3.17)

1009 A55-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.263


Journal of Fluid Mechanics

(a) (b)

−105 105

−B · ∇(b2 κ)

Z

YXZ

YX

Figure 5. (a) Isosurface of |b| for the initial flux tube from (2.3), colour-coded by −B · ∇(b2κ). Black lines
are integrals of −B · ∇(b2κ)T . (b) Zoomed view of the flux tube near the region marked by the black square in
(a), with black lines indicating the integral curves of ∇ × (∇ × FL ), illustrating the dipole structure induced
by the magnetic field.

which leads to

B · ∇N · B = B · ∇
(

T · ∇T
κ

)
· B = 0, N · ∇B · N = −N · ∇

(
T · ∇T

κ

)
· B = 0.

(3.18)
Using (3.16) and (3.18), the expressions represented by (3.7) and (3.8) can be simplified to
the following results:

∇ · T = 0, ∇ · N = −κ, ∇ · B = 0 (3.19)

and

∇ × T = κ B, ∇ × N = −τ N, ∇ × B = −τ B. (3.20)

Here, κ and τ denote the curvature and torsion of the curve, respectively.
We remark that both B and N in (3.20) are Beltrami vector fields (see Reed 1995),

which can be linked to chaotic magnetic lines in MHD flows (see Smiet et al. 2015). The
analysis method used for this local frame field is similar to the approach of Gibbon et al.
(2006) for quaternions, as both involve differentiating the local frame to capture the fluid’s
key dynamics.

Using (3.19) and (3.20), we simplify (3.13) to

∇ × FL = ∇ ×
(

b2κ N
)

= −
[

B · ∇
(

b2κ
)]

T − b2κτ N + b2(T · ∇κ)B. (3.21)

In this study, dynamical interactions are observed within the elongated tubular structures
where∣∣∣[B · ∇

(
b2κ

)]
T

∣∣∣ �
∣∣∣b2κτ N

∣∣∣ and
∣∣∣[B · ∇

(
b2κ

)]
T

∣∣∣ �
∣∣∣b2(T · ∇κ)B

∣∣∣ . (3.22)

This dominance arises due to the typically large gradient of b. Consequently, the first term
in (3.21) is the primary contributor to the evolution of the magnetic tube.

Figure 5 shows the distribution of the magnitude of the first term from (3.21) along the
initial magnetic tube described by (2.3). The term [−B · ∇(b2κ)]T dominates over the
other terms, creating a vortex source along the tube’s axis. Additionally, this term varies
in sign along the binormal direction, indicating opposing vortex sources, as illustrated in
figures 5(a) and 5(b). The other terms, |b2κτ N| and |b2(T · ∇κ)B|, reach their maxima
where κτ and (T · ∇κ) are largest, respectively. However, these terms are generally much
smaller than the first term (figures not shown).
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B

A

C

(a) (c)

(e)

(b)

(d )
0 4

1.5
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d = 0.12
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C
Z
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Z
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Y

Z
X

Y
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C

A

1.0

κ

τ

Figure 6. (a) Initial geometry of a single connected magnetic tube in the linked configuration Lm Ok . The
grey semi-transparent tube shows the isosurface of magnetic field strength, with curvature indicated by the
colour-coded centreline. The vectors along the centreline represent the binormal vector B, with their length
and colour corresponding to the torsion τ . Positions A, B and C correspond to the locations of maximum
curvature, minimum curvature and maximum torsion, respectively. (b) Isosurface of |b| = 50 at t = 0.01, with
red arrows indicating the direction of the binormal vector. Zoomed views of (b) are provided in (c) near A,
(d) near B and (e) near C. The distance between the split tubes is denoted by d.

Figure 6(a) shows the initial distributions of curvature κ , torsion τ and binormal vector
B along the central line of one of the flux tubes in the Lm Ok case. The variations
in curvature and torsion are relatively small. Positions A, B and C correspond to the
locations of maximum curvature, minimum curvature and maximum torsion, respectively.
Figure 6(b) indicates that the splitting direction is closely aligned with the binormal
direction of the initial magnetic tube. At position A, where curvature is greater than that
at B, the distance between the split tubes is larger, as shown in figures 6(c) and 6(d).
It is observed that greater curvature intensifies the formation of vortex pairs, thereby
accelerating the splitting of the tube. Figure 6(e) illustrates that twisting can hinder the
magnetic tube’s splitting, in agreement with Xiong & Yang (2020b).

We remark that each term in (3.21) involves curvature. For instance, in a one-
dimensional cylindrical magnetic tube with a flux distribution described by (2.3), where
κ = 0, the curl of the Lorentz force, ∇ × FL , equals zero. Consequently, such a cylindrical
magnetic tube does not act as a source of vorticity and thus does not lead to the splitting
of the magnetic tube.

If the initial magnetic tube possesses curvature, even if it remains constant along the
magnetic field lines, tube splitting can still occur. For example, for a magnetic tube with its
central line lying in a plane and under the conditions τ = 0 and T · ∇κ = 0, the expression
of (3.21) simplifies to ∇ × FL = −(κ B · ∇b2)T . This indicates that the vorticity source
is aligned parallel to the magnetic tube.
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−105 105

T · (∇ × FL)
(a) (b)Z

Y
X

Figure 7. Isosurfaces of |b| for a flow with an initially toroidal magnetic tube of constant curvature κ = 4 for
(a) |b| = 50 at t = 0 and (b) |b| = 20 at t = 0.005. The isosurfaces are colour-coded by T · (∇ × FL ), with
streamlines integrated along u in (b).

Figures 7(a) and 7(b) illustrate the evolution of the |b| isosurface, coloured by T · (∇ ×
FL), at t = 0 and 0.005. The initial toroidal magnetic tube generates opposing vortex
sources in the positive and negative z directions, causing them to move apart. As they
separate, the split tubes continue to produce opposing vortex sources, which may lead
to sustained tube splitting. In this magnetic tube configuration, we further confirm that
a larger curvature κ leads to a greater separation between the split tubes, driven by the
stronger vortex pairs induced by −(κ B · ∇b2)T .

3.3. Material properties of integral curves in vector fields
A key feature observed during the evolution is that the magnetic and vortex tubes
exhibit quasi-Lagrangian characteristics, approximately following the fluid velocity field
while interacting with each other. This behaviour leads to the vortex tubes induced
by the magnetic field reflecting the motion of the magnetic tubes in the early stages,
including similar splitting phenomena. We explore this behaviour through an analysis of
the governing equations for the vorticity and magnetic fields.

Specifically, despite the effects of magnetic interactions, the flow field associated
with the evolution of strong magnetic tubes closely follows the Helmholtz (1858)
vorticity conservation theorem and the Alfvén (1943) frozen-in field theorem. The
near-preservation of these conservation laws underscores the robustness of Lagrangian
dynamics, even under strong magnetic influences.

To analyse the temporal evolution of the vorticity field, we neglect viscosity and apply
the approximation

∇ × FL ≈ −
[

B · ∇
(

b2κ
)]

T (3.23)

to (3.21). Consequently, (3.12) simplifies to

Dω

Dt
≈ ω · ∇u −

[
B · ∇

(
b2κ

)]
T . (3.24)

For the temporal evolution of the magnetic field, we consider the second equation
in (2.1). By substituting ∇ × (u × b) with (b · ∇u − u · ∇b) and neglecting magnetic
viscous dissipation, the equation simplifies to
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Db
Dt

≈ b · ∇u. (3.25)

Thus, both the magnetic equation (3.25) and the vorticity equation (3.24) can be
approximately reduced to a unified form:

DL
Dt

= L · ∇u + λL, (3.26)

where λ= 0 for L = b and λ= −[B · ∇(b2κ)]/|ω| for L = ω. We present Corollary 1,
which shows that the integral curves of L in (3.26) correspond to material curves.

COROLLARY 1. Assuming the vector field L satisfies (3.26), the integral curves of L
are material curves.

Proof. Assume that φ(x, t) is a scalar field that evolves over time, with its isosurfaces
representing level sets of constant φ. Initially, these isosurfaces are aligned with the vector
field L, implying that L lies tangentially along the isosurfaces, i.e.

L · ∇φ|t=0 = 0, (3.27)

and that the isosurfaces of φ are material surfaces, satisfying Dφ/Dt = 0, we have

D(L · ∇φ)

Dt
= DL

Dt
· ∇φ + L · D(∇φ)

Dt
= DL

Dt
· ∇φ − L · ∇u · ∇φ. (3.28)

Substituting (3.26) into (3.28), we get

D(L · ∇φ)

Dt
= λL · ∇φ. (3.29)

Combining (3.27) and (3.29), we conclude L · ∇φ ≡ 0. This implies that the material
surfaces initially parallel to L remain parallel to L during the evolution.

Since the integral curves of the vector field L represent the intersection lines of two
independent material surfaces, these curves are material curves themselves.

We remark that the material properties of the vector field L in Corollary 1 can also be
interpreted through its Clebsch representation, as detailed in Tao et al. (2021), Yang et al.
(2021) and Xiong et al. (2022). Additionally, when λ= 0 in (3.26), this corollary reduces
to the classical Helmholtz (1858) vorticity conservation theorem and the Alfvén (1943)
frozen-in field theorem, both describing the conservation of vortex and magnetic surfaces,
respectively.

Corollary 1 confirms that both magnetic and vortex tubes in the MHD flow field exhibit
similar quasi-Lagrangian properties. This result assumes the neglect of viscosity and uses
the approximation of the Lorentz force given by (3.23). This approximation is valid in
the early stages of evolution. However, in the later stages, the vortex tubes are affected
by viscous dissipation, leading to deviations in the structures of the magnetic and vortex
tubes.

We investigate instances of initial magnetic tubes, following the methodology set forth
by Xiong & Yang (2020a). Figure 8 illustrates the evolution of isosurfaces for |b| and |ω|
in the Lm Ok case with Rem = 103.6. As the magnetic field evolves, flux tubes undergo
rapid topological changes, transitioning from quadrilateral to octagonal structures. The
initial splitting of the tubes is accompanied by a notable release of magnetic energy and
the formation of induced vortex tubes. These vortex tubes initially resemble magnetic
tubes but decrease in intensity as kinetic energy dissipates, leading to outward diffusion
of vorticity.
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(a) (b) (c)

(d) (e) ( f )

−20000 20000

j · b

Figure 8. Isosurfaces of |b| = 50, 40 and 20 (a–c) and |ω| = 800, 800 and 300 (d–f ) for the Lm Ok case with
Rem = 1722.8 at times (a,d) t = 0.005, (b,e) t = 0.01 and (c, f ) t = 0.05. All isosurfaces are colour-coded by
j · b.

We further observe a phenomenon associated with the linkage of magnetic tubes, where
the evolution of the isosurfaces |b| and |ω| in the Lm Ok configuration is identical to that
observed in Rm Ok . In the initial stages of evolution, the fluid velocity is induced by the
Lorentz force. This behaviour is examined through the velocity equation in (2.1), where
the motion is governed by the magnetic field via the Lorentz force (2.2). Reversing the
orientation of the magnetic tube from b to −b does not affect FL or the induced velocity
field. Consequently, the velocity fields in the Rm Ok and Lm Ok configurations are identical
during the initial stage.

Taking the inner product of b with the second equation in (2.1), we obtain the
Lagrangian equation for the magnetic energy density:

D
Dt

b2

2
=Am +Bm, (3.30)

where the right-hand-side components are defined as

Am = αb2 and Bm = νm

(∇2b2

2
− ∇b : ∇b

)
. (3.31)

The first term, Am , represents the stretching effect, which is determined by the geometric
evolution of the velocity field. The second term, Bm , accounts for the dissipation of
magnetic energy. Here, α = T · ∇u · T represents the stretching rate of an infinitely thin
tube (Bajer & Moffatt 1997) and ∇b : ∇b is the sum of the squares of each component of
∇b.

Equation (3.30) remains unchanged when b is replaced with −b, as both Am and Bm
are unaffected by the magnetic tube’s linkage. Thus, while the induced velocity interacts
with the magnetic field, the linkage of the magnetic tube does not affect the evolution
of magnetic strength. Additionally, as indicated by (3.11), it does not alter the magnitude

1009 A55-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.263


L. Kang and others

Z

Y
X

−250 250

ωx

(c)

P
Q

−10 10

bx

(b)

−10 10

(a)
bx

P Q

R R

Z

Y
X

Figure 9. Magnetic and vorticity field comparison in the Lm Ok and Rm Ok cases. (a) Contour plots of bx at
x = π, along with semi-transparent isosurfaces of |b| = 20 and integral trajectories of b at t = 0.05 for the
Lm Ok case. (b) Same as (a) but for the Rm Ok case. In both (a) and (b), the symbol P and symbols Q and R
denote regions of identical and opposite bx , respectively. (c) Contour plots of ωx showing consistent patterns
across both cases.
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Figure 10. Temporal evolution of magnetic helicity Hm for (a) Lm Ok and Lm Lk with Rem = 103.6, where
different θ values represent varying angles between magnetic and vortex tubes for Lm Lk ; (b) Lm Ok with
varying magnetic Reynolds numbers.

or direction of the Lorentz force. Consequently, the velocity–vorticity field in the fluid
remains unchanged during the second stage.

Figure 9 compares the magnetic and vorticity fields in the Lm Ok and Rm Ok cases.
Figures 9(a) and 9(b) display contour plots of bx at x = π, along with semi-transparent
isosurfaces of |b| = 20 and integral trajectories of b at t = 0.05 for each case. Although
there are variations in the magnetic field in regions Q and R between figures 9(a) and 9(b),
the vorticity fields remain consistent, as shown in figure 9(c). Additionally, as previously
analysed, while linkage alters the direction of the magnetic field, it does not affect the
geometry of the isosurfaces and magnetic field lines shown in figures 9(a) and 9(b).

3.4. The temporal evolution of helicity
Fluid statistics are influenced by the deformation of structural topology, as indicated by
changes in helicity. Figure 10 presents the temporal evolution of magnetic helicity Hm for
Lm Ok at different magnetic Reynolds numbers and for Lm Lk at various angles. Magnetic
helicity initially increases rapidly before reaching a plateau, with the plateau value rising
as the angle increases. This may be due to the reduced topological deformation when
magnetic tubes and vortex tubes coincide. Additionally, the magnetic Reynolds number
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also affects the extent of helicity changes. The mechanism driving the evolution of helicity
is analysed in further detail.

We assume that the calculated helicity is a scalar field F , defined as the dot product of
the vectors Gi and H j :

F = Gi · H j , (3.32)

where

Gi = ∇ × H i , ∇ · Gi = 0 (i = 1, 2). (3.33)

Then,

∂F
∂t

= ∂Gi

∂t
· H j + (∇ × H i ) · ∂ H j

∂t
= ∇ ·

(
H i × ∂ H j

∂t

)
+ ∂G j

∂t
· H i + ∂Gi

∂t
· H j .

(3.34)

Here, Gi can be the vorticity field ω or the magnetic field b. Their temporal evolution
equations are

∂Gi

∂t
= ∇ × (u × Gi ) + νi∇2Gi + ∇ × Fi . (3.35)

When Gi is the vorticity field, Fi = j × b; when Gi is the magnetic field, Fi = 0. Using
the equation above, we have

∂Gi

∂t
· H j = ∇ × (u × Gi ) · H j + νi∇2Gi · H j + (∇ × Fi ) · H j . (3.36)

The three terms on the right-hand side of (3.36) can be rewritten as⎧⎪⎨
⎪⎩

∇ × (u × Gi ) · H j = ∇ · (u × Gi × H j ) + G j · (u × Gi ),

∇2Gi · H j = ∇ × (∇2 H i ) · H j = ∇ · (∇2 H i × H j ) − G j · (∇ × Gi ),

(∇ × Fi ) · H j = ∇ · (Fi × H j ) + Fi · G j .

(3.37)

Substituting (3.37) into (3.36), we obtain

∂Gi

∂t
· H j = ∇ · W i j + G j · (u × Gi ) − νi G j · (∇ × Gi ) + Fi · G j (3.38)

with

W i j = u × Gi × H j + νi∇2 H i × H j + Fi × H j . (3.39)

According to the control volume transport formula for a fixed volume, the time rate of
change of the integral of a scalar field F over a fixed control volume Ω is given by

d
dt

∫
Ω

F dV =
∫

Ω

∂F
∂t

dV +
∫

∂Ω

Fu · n dS, (3.40)

where n is the outward unit normal to the stationary boundary ∂Ω and u is the fluid
velocity. By substituting (3.34) and (3.38) into (3.40), we obtain

d
dt

∫
Ω

F dV =
∫

∂Ω

n ·
(
Fu + H i × ∂ H j

∂t
+ W i j + W j i

)
dS

+
∫

Ω

[−νi G j · (∇ × Gi ) − ν j Gi · (∇ × G j ) + Fi · G j + F j · Gi ]dV .

(3.41)
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For the numerical simulation conducted in a periodic cubic domain, the first term on
the right-hand side of (3.41) vanishes due to the periodic boundary conditions. These
conditions ensure that the flux across each face is exactly cancelled by the flux through
the corresponding opposite face. Consequently, the net surface integral over ∂Ω reduces
to zero.

The magnetic helicity is defined as Hm = ∫
Ω

a · b dV , where b = ∇ × a. Using this
definition, (3.41) simplifies to

dHm

dt
= −2νm

∫
Ω

b2(∇ × T ) · T dV, (3.42)

where b = bT . At the initial moment, the first equation in (3.20) shows that (∇ × T ) · T =
0, indicating that the rate of change of Hm is zero. As time progresses, the magnetic field
lines become chaotic. This change could be attributed to the Beltrami structure induced by
the Beltrami field in the directions of N and B.

For the cross-helicity Hc = ∫
Ω

b · u dV , (3.41) can be simplified to

dHc

dt
= −

∫
Ω

[νk b · (∇ × ω) + νmω · (∇ × b)]dV +
∫

Ω

FL · b dV, (3.43)

where νk = νm . Additionally, the term b · (∇ × ω) + ω · (∇ × b) can be rewritten as ∇ ·
(ω × b) + 2(∇ × b) · ω, and FL · b = 0. Therefore, (3.43) can be further reduced to

dHc

dt
= −2νm

[∫
Ω

ωb(∇ × T ) · Tω dV +
∫

Ω

ω∇b · (T × Tω)dV

]
, (3.44)

where ω = ωTω. This demonstrates the critical importance of the relative orientation of T
and Tω. When they are parallel, the second term becomes ineffective.

For the kinetic helicity Hk = ∫
Ω

ω · u dV , (3.41) can be simplified to

dHk

dt
= −2νk

∫
Ω

ω2Tω · (∇ × Tω)dV + 2
∫

Ω

ωFL · Tω dV . (3.45)

The first term on the right-hand side represents the viscous dissipation of helicity. It
involves the vorticity ω and the unit vector Tω, which describe the geometry of vortex
lines. This term indicates that viscous forces modify helicity by disrupting coherent vortex
structures, with the dissipation rate proportional to the square of the vorticity magnitude
|ω|2. The second term represents the interaction between the vorticity field ω and the
Lorentz force FL . It accounts for the mechanical work done by electromagnetic forces
on the fluid, which may either increase or decrease the kinetic helicity, depending on the
relative alignment of the vorticity and force fields.

In the limit of infinite conductivity (σm → ∞), where magnetic diffusivity νm = 0 and
the term νm∇2b vanishes, the MHD equations reduce to their ideal form. In this regime,
magnetic helicity is conserved, and the magnetic field topology remains unchanged. To
observe changes in magnetic field topology in this study, we use higher resistivity settings.

Figure 11 illustrates the evolution of (3.42), (3.44) and (3.45) over time, compared
with numerical differentiation results. This comparison validates the accuracy of both the
theoretical derivation and the numerical simulation. With the chosen initial conditions,
the rates of change for magnetic, cross and kinetic helicity are initially zero. When only
magnetic tubes are present in the flow field, the rate of change of magnetic helicity
increases significantly. The cross-helicity remains zero in the absence of vortex tubes due
to the source term (3.44) being zero because of symmetry. When both magnetic and vortex
tubes are present, the rates of change for both magnetic helicity and cross-helicity initially
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Figure 11. Numerical verification of the theoretical formulas: (a) equation (3.42), (b) equation (3.44) and
(c) equation (3.45). The black solid and green dashed lines represent the left-hand-side terms, while the blue
squares and red circles correspond to the right-hand-side terms for cases I, Lm Ok , and II, Lm Lk , with θ = 0 ◦
and Rem = 861.4.
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Figure 12. Maximum magnetic energy release rate ( dEm/ dt)max and maximum kinetic energy increase rate
( dEk/dt)max as a function of the initial angle θ between the vortex tube and magnetic tube for the Lm Lk cases
with Rem = 103.6. Insets A, B, C and D show isosurfaces of |b| (in blue) and |ω| (in red) at t = 0 for θ = 0 ◦,
2 ◦, 15 ◦ and 45 ◦, respectively.

peak before rapidly dropping to zero, consistent with the rapid flattening observed in the
helicity evolution discussed above (figure 10). Additionally, the rate of change of kinetic
helicity initially drops rapidly to a negative value, then rises sharply to a positive value,
before returning to near zero. The flow field exhibits vortex lines that twist, reconnect and
break apart, eventually forming stable small-scale structures.

4. Vortex and magnetic tube interactions

4.1. Energy transfer in vortex and magnetic tube interactions
The angle between the structures is found to be highly sensitive, as illustrated by
the evolution of helicity in figure 10. The effects of the relative orientation of the
magnetic and vortex tubes on the dynamics is further investigated through the lens of
energy and structural evolution. Figure 12 shows the variation in the maximum rate of
magnetic energy release, (dEm/dt)max , and the maximum rate of kinetic energy increase,
(dEk/dt)max , as functions of the initial angle θ between the magnetic and vortex tubes.
A moderate Reynolds number of Rem = 103.6 is considered in the Lm Lk case. It is
observed that |(dEm/dt)max | increases rapidly with θ , reaching a peak at θ ≈ 7.5 ◦. In
contrast, (dEk/dt)max attains its maximum at θ = 0 ◦ and decreases more rapidly as θ

increases, with a minimum around θ = 5 ◦. The most significant variations in these curves
are observed at smaller values of θ , and thus the subsequent analysis is concentrated on
this range.
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Figure 13. Temporal evolution of magnetic energy Em for (a) Lm Ok and Lm Lk with Rem = 103.6, where
different θ values represent varying angles between magnetic and vortex tubes for Lm Lk ; (b) Lm Ok with
varying magnetic Reynolds numbers.
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Figure 14. Temporal evolution of magnetic dissipation rate εm for (a) Lm Ok and Lm Lk with Rem = 103.6,
where different θ values represent varying angles between magnetic and vortex tubes for Lm Lk ; (b) Lm Ok
with varying magnetic Reynolds numbers.

The maximum value of energy change is not the only factor showing notable angular
sensitivity; the temporal evolution of energy also exhibits considerable variation. Figure 13
illustrates the temporal evolution of magnetic energy Eb under different conditions:
Lm Lk , where the angles between magnetic and vortex tubes vary, and Lm Ok , involving
different magnetic Reynolds numbers. Magnetic energy decreases over time due to
resistive dissipation or conversion into kinetic energy. The presence of vortex tubes
affects this evolution, resulting in a reduced release of magnetic energy compared with
systems with only initial magnetic fields. The impact of vortex tubes on magnetic energy
release is dependent on the angle between the tubes; even small changes, such as a 2◦
variation, can considerably alter the behaviour of the magnetic tube. Increasing the angle
reduces mutual interaction, leading to more independent evolutions, while decreasing
the angle enhances interaction, causing complex coupling effects that hinder magnetic
energy release. Additionally, a reduction in magnetic viscosity slows the decay of magnetic
energy, in line with expected viscous dissipation trends.

Magnetic energy changes can be assessed through the magnetic dissipation rates shown
in figure 14, where all curves display an initial rise followed by a subsequent decline over
time. Although figure 13 depicts a similar evolution of magnetic energy for Lm Ok without
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Figure 15. Temporal evolution of the kinetic dissipation rate εk for (a) Lm Ok and Lm Lk with Rem = 103.6,
where different θ values represent varying angles between magnetic and vortex tubes for Lm Lk ; (b) Lm Ok with
varying magnetic Reynolds numbers.

an initial vortex tube and Lm Lk with a 4◦ angle, figure 14 reveals differing dissipation
rates between these scenarios. Specifically, the Lm Ok case resembles the scenario with
overlapping vortex and magnetic tubes more closely. This suggests that while overlapping
vortex tubes do not markedly influence magnetic energy dissipation, they do reduce the
conversion of magnetic energy into kinetic energy, leading to the slowest decrease in
magnetic energy, as illustrated in figure 13. Moreover, in the later stages of evolution,
the magnetic dissipation rate increases for configurations with overlapping magnetic and
vortex tubes, contrasting with cases involving only magnetic tubes. This discrepancy is
attributed to geometric and topological changes in the structure of the two cases during the
later stages. Specifically, magnetic tubes undergo splitting during free evolution, whereas
in the presence of vortex tube constraints, they do not. This results in behaviour that
diverges from that of the initial phase.

The interaction between vortex and magnetic tubes has a substantial effect on
the conversion of magnetic energy to kinetic energy and its subsequent dissipation.
Overlapping vortex and magnetic tubes restrict the conversion of magnetic energy,
leading to reduced peaks in kinetic energy dissipation, as illustrated in figure 15. In
contrast, other configurations display more pronounced dissipation peaks. These peaks
are associated with structural splitting in the flow, involving extensive topological
reconnections and disconnections. Additionally, an increase in the Reynolds number
delays both the dissipation peaks and the topological changes in the magnetic tubes, as
shown in figure 15(b).

We investigate the morphological evolution of flux tubes across four angles, θ = 0 ◦,
2 ◦, 15 ◦ and 45 ◦, as depicted in figure 16. This examination reveals the development of
isosurfaces |b|, colour-coded by b · u, and isosurfaces |ω| in light grey, captured at t =
0.05. The angle θ influences the morphological changes in magnetic tubes.

At small angles, such as θ = 0 ◦ and 2 ◦, the vortex tube inhibits the splitting of the
magnetic tube. While the magnetic tube initially undergoes partial splitting, this process is
suppressed by the presence of the vortex tube. The vortex tube’s morphology remains
largely unchanged, whereas the magnetic tube adapts to its evolution. We investigate
the evolution of vortex tubes with different linkages undergoing free decay in viscous
flows. Left-handed linkages elongate, interact strongly and dissipate viscously, generating
vorticity gradients that drive reconnection and scale cascade processes. In contrast, right-
handed linkages exhibit collective rotation, reconnection and disconnection, evolving into
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(a) (b) (c) (d )

Figure 16. Isosurfaces of |b| = 100 and |ω| = 300 for the Lm Lk cases with Rem = 103.6 at t = 0.05 for
(a) θ = 0 ◦, (b) θ = 2 ◦, (c) θ = 15 ◦ and (d) θ = 45 ◦. Magnetic tubes are rendered based on b · u, with vortex
tubes shown in light grey. Vortex tubes may be obscured by magnetic tubes at smaller angles but are visible
separately at larger angles.

large-scale, unknotted vortex rings rather than small-scale structures that transition rapidly
to turbulence (see Xiong & Yang 2019a). In MHD flows with a non-trivial magnetic field,
these effects further influence the late-stage evolution of magnetic flux tubes through
nonlinear coupling. Conversely, at larger angles like θ = 45 ◦, the vortex tube does not
obstruct the initial splitting of the magnetic tube for t < 0.01, leading to a rapid release
of magnetic energy. However, it alters the structure of the magnetic tube, as evidenced
by considerable transverse stretching at θ = 45 ◦. Additionally, after t > 0.05, as the
vorticity field weakens, its effect on the interaction between the vortex and magnetic tubes
diminishes.

4.2. Annihilation of vortex dipoles
Based on the preceding analysis, we find that the Lorentz force generated by a magnetic
tube induces the formation of counter-rotating vortices, leading to a self-splitting effect.
Furthermore, the presence of initial vortex tubes can affect the evolution of magnetic tubes,
especially when the initial vortex is aligned with the magnetic tube. In these instances, the
magnetic tubes show minimal splitting, and their morphology evolves closely in alignment
with that of the vortex tubes.

Figure 17 illustrates the flow field around magnetic flux tubes for the Lm Ok and
Lm Lk cases, as shown by the streamlines. In the Lm Ok set-up, vortex dipoles and tube
splitting are observed. In contrast, in the Lm Lk case, where the vortex tube is aligned
with the magnetic tube, vortex dipole formation is suppressed, preventing splitting. This
finding aligns with the mechanism described by Xiong & Yang (2020a), which posits that
magnetic field line torsion inhibits magnetic tube splitting. In both scenarios, the local
distribution of vortices is adjusted to reduce vortex dipole formation.

Figure 18(a) presents plane cuts of the contour for FL ,y = ey · FL at t = 0 and z = 1.63,
which corresponds to the magnetic tube’s symmetry plane in the z direction. The contour
shows positive values of FL ,y in the upper part of the tube and negative values in the
lower part. Likewise, FL ,x (which is ex · FL ) is positive on the right-hand side of the tube
and negative on the left-hand side (not shown). The streamline in figure 18(a) represents
the projection of the Lorentz force onto the plane, extending outward from the centre,
and contributes to the tube’s expansion and splitting. Figures 18(b) and 18(c) depict the
projections of velocity streamlines and contours of FL ,y at t = 0.005 for the Lm Ok and
Lm Lk scenarios, as shown in figure 17. In the absence of the vortex tube, the magnetic tube
undergoes splitting, resulting in a dipole-like velocity field. Conversely, when the initial
vortex tube is present, the Lorentz force continues to drive the magnetic tube towards
splitting; however, the tube remains intact. Consequently, the velocity field around the
magnetic tube exhibits a point vortex configuration.
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Figure 17. Streamlines colour-coded by the magnitude of |u| for two cases with Rem = 103.6: (a) Lm Ok and
(b) Lm Lk with θ = 0 at t = 0.005.
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Figure 18. Velocity field and Lorentz force for MHD flows with Rem = 103.6 within the dashed box in (a),
with the isocontour at z = 1.63 showing FL ,y = ey · FL . The lines in (a) represent the projection of the vector
field FL onto the plane at z = 1.63 at the initial stage for the Lm Ok case. The lines in (b) and (c) represent
the projection of the velocity field u onto the plane at z = 1.63 at t = 0.005 for the Lm Ok and Lm Lk cases,
respectively. The colourbar for FL ,y applies to (a–c), while the colourbar for |u| applies to (b,c).

Based on (3.30) and (3.31), we analyse the influence of energy transfer on MHD flow
dynamics. Figure 19 illustrates the temporal evolution of the stretching term Am and the
dissipative term Bm across various configurations: pure magnetic tubes (Rm Ok and Lm Ok)
and configurations with aligned magnetic and vortex tubes (Rm Rk and Lm Lk). For pure
magnetic tubes, Am and Bm initially exhibit no dependence on linkage, with notable
changes occurring around t = 0.005 and a gradual decrease beyond t > 0.02. Negative
values of Am are associated with tube splitting, which facilitates the conversion of
magnetic energy into kinetic energy. In contrast, for the aligned configurations, particularly
Lm Lk , Am is positive, indicating an energy transfer from the vortex to the magnetic tube.
While the influence of the dissipative term is relatively minor in both scenarios, its effect is
prolonged when both magnetic and vortex tubes are present compared with cases involving
only magnetic tubes.

We present the magnitudes of the vorticity fields induced by both the magnetic tube
and the additional vortex tube. This analysis reveals that an additional vortex tube with
strength comparable to that of the magnetic tubes can prevent the formation of vortex
dipoles, thereby inhibiting magnetic tube splitting. For the magnetic tube described
by the initial condition in (2.3), we take Rv = 5σ ≈ 0.125 as the characteristic length.
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Figure 19. Temporal evolution of (a) Am = αb2 and (b) Bm = νm(∇2b2/2 − ∇b : ∇b) in the DNS of MHD
flows with Rem = 103.6.

The characteristic magnitude of b is given by the maximum value bmax = Γm/(2πσ 2) ≈
265, measured at � = 0. The characteristic time interval for rapid magnetic energy release
is set to Tc = 0.005, as indicated in figures 13 and 14.

In the Lm Ok case, the linearised vorticity equation at the initial time is given by

∂ω

∂t
− ν∇2ω = ∇ × FL . (4.1)

The magnitude of ∇ × FL can be estimated using (3.21) as O(|∇ × FL |) ∼ O(|B ·
∇(b2κ)|) ≈ max(b2κ)/Rv ≈ 8.4 × 105. Consequently, the magnitude of vorticity induced
by the magnetic tube is approximately Tc · O(|∇ × FL |) ≈ 4.2 × 103. Thus, the initial
magnetic tubes generate dipole vortex tubes with a magnitude of 4.2 × 103 and opposite
directions. For an initial vortex tube of the form ωr = Γk/(2πσ 2) exp[−r2/(2σ 2)], the
vorticity magnitude is also approximately Γk/(2πσ 2) ≈ 4.4 × 103. Therefore, introducing
a vortex tube aligned with the initial magnetic tube enhances the vorticity of the same sign
while diminishing the vorticity of the opposite sign, thereby inhibiting splitting.

5. Conclusion
We analyse MHD flows using DNS, concentrating on the interaction between magnetic
and vortical flux tubes. Our study elucidates how the linkages and angles between these
tubes influence the release, dissipation and conversion of magnetic and kinetic energies.
We emphasise the critical impact of geometric factors on the system’s evolution.

In the absence of an initial magnetic field, vortices with different linkages
exhibit distinct behaviours: left-handed linkage vortices experience considerable viscous
dissipation and fragmentation at smaller scales, while right-handed linkage vortices
exhibit collective rotational motion, forming larger, cohesive structures. Without initial
vorticity, both magnetic and induced vorticity fields evolve consistently, displaying quasi-
Lagrangian material properties (see figure 8). The rapid changes in helicity occur only in
the early stages of evolution (see figure 11), during which magnetic flux tubes generate
dipole vortices via Lorentz forces (see figure 18), leading to the splitting of magnetic tubes
into finer structures. This process involves conversion and release of magnetic energy,
influenced by the curvature geometry of the magnetic tubes (see figure 6).

The presence of vortex tubes can hinder the formation of induced vortex dipoles within
magnetic tubes, thereby preventing their splitting (see figure 17). Furthermore, even small
misalignments of 1◦−2 ◦ between vortex and magnetic tubes can result in markedly
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Figure 20. Temporal evolution of (a) magnetic energy Em and (b) kinetic energy Ek for the Lm Ok case with
the minimum νm from the examples calculated in this study at various grid resolutions. The legend in (b) is
omitted as it duplicates that in (a).

different energy release mechanisms (see figure 12). The strongest interactions occur
when magnetic and vortex tubes coincide; in such cases, vortex tubes inhibit both the
topological splitting and energy release of the magnetic tubes. These results align with
earlier experimental observations by Spruit & Roberts (1983).

We also introduce the FS frame field analysis method in § 3.1, which allows for a
streamlined expression of the Lorentz force (see (3.11)) and its curl field (see (3.13)). This
approach enables a detailed quantitative analysis of magnetic tube splitting mechanisms
and isolates the primary mechanism of induced splitting, namely the alignment of the curl
of Lorentz force with the tangent direction of the magnetic field lines, which is related to
the curvature of these lines. This method can be extended as a general vector field analysis
technique, especially in cases where field helicity is dependent solely on writhe, providing
a concise formulation of frame divergence and curl (see (3.19) and (3.20)).

Future research may focus on examining additional parameters, such as varying
viscosities or magnetic diffusivities, to gain a deeper understanding of the interplay
between dissipation and energy transfer in MHD flows. Exploring different initial
configurations and spatial scales could provide further insights into the dynamics
of magnetic and vortical structures. Additionally, investigating the effects of external
perturbations or constraints on flux tube behaviour may offer new strategies for controlling
or manipulating these flows, with potential applications in engineering and astrophysics.
Integrating experimental data with computational simulations could also enhance our
understanding of these complex fluid dynamics systems.
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Appendix A. Grid convergence analysis
Previous studies have demonstrated that a 5123 grid resolution is sufficient to obtain
accurate results under moderate conditions, as shown in Hao et al. (2019). To evaluate
the numerical accuracy of our simulations under more extreme conditions, we conduct
a grid convergence study of the magnetic and kinetic energy for the Lm Ok case with
the minimum νm from the examples calculated in this study. A DNS is performed on
grids with resolutions of 2563, 5123, 7683 and 10243. As shown in figure 20, the energy
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profiles converge at the 10243 grid resolution, confirming that the grid resolution used in
our simulations, as specified in table 1, is adequate.

REFERENCES

ALFVÉN, H. 1943 On the existence of electromagnetic-hydromagnetic waves. Ark. Mat. Astron. Fys. 29, 1–7.
ALUIE, H. 2009 Hydrodynamic and Magnetohydrodynamic Turbulence: Invariants, Cascades, and Locality.

The Johns Hopkins University.
ANGELOPOULOS, V., ARTEMYEV, A., PHAN, T.D. & MIYASHITA, Y. 2020 Near-earth magnetotail

reconnection powers space storms. Nat. Phys. 16 (3), 317–321.
BAJER, K. & MOFFATT, H.K. 1997 On the effect of a central vortex on a stretched magnetic flux tube. J. Fluid

Mech. 339, 121–142.
BECKERS, J.M. & SCHRÖTER, E.H. 1968 The intensity, velocity and magnetic structure of a sunspot region.

Solar Phys. 4 (2), 142–164.
BERCIU, M., RAPPOPORT, T.G. & JANKÓ, B. 2005 Manipulating spin and charge in magnetic semiconductors

using superconducting vortices. Nature 435 (7038), 71–75.
BISKAMP, D. 1994 Magnetic reconnection. Phys. Rep. 237 (4), 179–247.
BOWERS, C.F., SLAVIN, J.A., DIBRACCIO, G.A., POH, G., HARA, T., XU, S. & BRAIN, D.A. 2021 Maven

survey of magnetic flux rope properties in the martian ionosphere: comparison with three types of formation
mechanisms. Geophys. Res. Lett. 48 (10), e2021GL093296.

CASSAK, P.A., SHAY, M.A. & DRAKE, J.F. 2005 Catastrophe model for fast magnetic reconnection onset.
Phys. Rev. Lett. 95 (23), 235002.

CHELPANOV, A.A., KOBANOV, N.I. & KOLOBOV, D.Y. 2015 Characteristics of oscillations in magnetic knots
of solar faculae. Astron. Rep. 59 (10), 968–973.

DAVIDSON, P.A. 2017 Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics,
vol. 55. Cambridge University Press.

DOMÍNGUEZ-LOZOYA, J.C., CUEVAS, S., DOMÍNGUEZ, D.R., Á. VALOS-ZÚ NIGA, R. & RAMOS, E.
2021 Laboratory characterization of a liquid metal mhd generator for ocean wave energy conversion.
Sustainability 13 (9), 4641.

DUMIN, Y.V. & SOMOV, B.V. 2019 Topological model of the anemone microflares in the solar chromosphere.
Astron. Astrophys. 623, L4.

DUMIN, Y.V. & SOMOV, B.V. 2020 New types of the chromospheric anemone microflares: case study. Solar
Phys. 295 (7), 1–10.

EFFENBERG, F., FENG, Y., SCHMITZ, O., FRERICHS, H., BOZHENKOV, S.A., HÖLBE, H., KÖNIG, R.,
KRYCHOWIAK, M., PEDERSEN, T.S. & REITER, D. 2017 Numerical investigation of plasma edge transport
and limiter heat fluxes in Wendelstein 7-X startup plasmas with EMC3-EIRENE. Nucl. Fusion 57 (3),
036021.

EGEDAL, J., LE, A. & DAUGHTON, W. 2013 A review of pressure anisotropy caused by electron trapping in
collisionless plasma, and its implications for magnetic reconnection. Phys. Plasmas 20 (6), 061201.

ELSASSER, W.M. 1950 The hydromagnetic equations. Phys. Rev. 79 (1), 183–183.
FAN, Y. 2008 The three-dimensional evolution of buoyant magnetic flux tubes in a model solar convective

envelope. Astrophys. J. 676 (1), 680–697.
FREIDBERG, J.P., MANGIAROTTI, F.J. & MINERVINI, J. 2015 Designing a tokamak fusion reactor–how does

plasma physics fit in? Phys. Plasmas 22 (7), 070901.
GIBBON, J.D., HOLM, D.D., KERR, R.M. & ROULSTONE, I. 2006 Quaternions and particle dynamics in the

Euler fluid equations. Nonlinearity 19 (8), 1969–1983.
GONZALEZ, W.D., JOSELYN, J.A., KAMIDE, Y., KROEHL, H.W., ROSTOKER, G., TSURUTANI,

B.T. & VASYLIUNAS, V.M. 1994 What is a geomagnetic storm? J. Geophys. Res. Space Phys. 99 (A4),
5771–5792.

GOOSSENS, M., RUDERMAN, M.S. & HOLLWEG, J.V. 1995 Dissipative MHD solutions for resonant Alfvén
waves in 1-dimensional magnetic flux tubes. Solar Phys. 157 (1–2), 75–102.

HAO, J., XIONG, S. & YANG, Y. 2019 Tracking vortex surfaces frozen in the virtual velocity in non-ideal
flows. J. Fluid Mech. 863, 513–544.

HAO, J. & YANG, Y. 2021 Magnetic knot cascade via the stepwise reconnection of helical flux tubes. J. Fluid
Mech. 912, A48.

HASIMOTO, H. 1959 Magnetohydrodynamic wave of finite amplitude at magnetic Prandtl number 1. Phys.
Fluids 2 (5), 575–576.

1009 A55-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.263


Journal of Fluid Mechanics

HELMHOLTZ, H. 1858 Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen
entsprechen. J. Reine Angew. Math. 55, 25–55.

HOELZL, M., HUIJSMANS, G.T.A., PAMELA, S.J.P., BÉCOULET, M., NARDON, E., ARTOLA, F.J.,
NKONGA, B., ATANASIU, C.V., BANDARU, V. & BHOLE, A. 2021 The JOREK non-linear extended MHD
code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas.
Nucl. Fusion 61 (6), 065001.

INOUE, S., KUSANO, K., BÜCHNER, J. & SKÁLA, J. 2018 Formation and dynamics of a solar eruptive flux
tube. Nat. Commun. 9 (1), 174.

JI, H., DAUGHTON, W., JARA-ALMONTE, J., LE, A., STANIER, A. & YOO, J. 2022 Magnetic reconnection
in the era of exascale computing and multiscale experiments. Nat. Rev. Phys. 4 (4), 263–282.

KIVOTIDES, D. 2018 Interactions between vortex tubes and magnetic-flux rings at high kinetic and magnetic
Reynolds numbers. Phys. Rev. Fluids 3 (3), 033701.

KIVOTIDES, D. 2019 Interactions between vortex and magnetic rings at high kinetic and magnetic Reynolds
numbers. Phys. Lett. A 383 (14), 1601–1606.

KULSRUD, R.M. 1983 MHD description of plasma. In Handbook of Plasma Physics, vol. 1, pp. 115. North-
Holland.

LAZARIAN, A. & VISHNIAC, E.T. 1999 Reconnection in a weakly stochastic field. Astrophys. J. 517 (2),
700–718.

LEVCHENKO, I., XU, S., MAZOUFFRE, S., LEV, D., PEDRINI, D., GOEBEL, D., GARRIGUES, L.,
TACCOGNA, F. & BAZAKA, K. 2020 Perspectives, frontiers, and new horizons for plasma-based space
electric propulsion. Phys. Plasmas 27 (2), 020601.

LINTON, M.G., DAHLBURG, R.B. & ANTIOCHOS, S.K. 2001 Reconnection of twisted flux tubes as a function
of contact angle. Astrophys. J. 553 (2), 905–921.

LOZITSKY, V.G., BARANOVSKY, E.A., LOZITSKA, N.I. & LEIKO, U.M. 2000 Observations of magnetic
field evolution in a solar flare. Astron. Rep. 191, 171–183.

LUNDGREN, T.S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25 (12),
2193–2203.

LUNDGREN, T.S. 1993 A small-scale turbulence model. Phys. Fluids A 5 (6), 1472–1483.
MACTAGGART, D., PRIOR, C., RAPHALDINI, B., ROMANO, P. & GUGLIELMINO, S.L. 2021 Direct evidence

that twisted flux tube emergence creates solar active regions. Nat. Commun. 12 (1), 6621.
MAKWANA, K.D. & YAN, H. 2020 Properties of magnetohydrodynamic modes in compressively driven

plasma turbulence. Phys. Rev. X 10 (3), 031021.
MANEK, B. & BRUMMELL, N. 2021 On the origin of solar hemispherical helicity rules: simulations of the

rise of magnetic flux concentrations in a background field. Astrophys. J. 909 (1), 72.
MININNI, P.D., POUQUET, A.G. & MONTGOMERY, D.C. 2006 Small-scale structures in three-dimensional

magnetohydrodynamic turbulence. Phys. Rev. Lett. 97 (24), 244503.
ÖZDEMIR, Z. 2021 A geometrical and physical interpretation of quaternionic generalized magnetic flux tubes.

Chaos, Solitons Fractals 143, 110541.
PARKER, E.N. 1978 The mutual attraction of magnetic knots. astrophys. Astrophys. J. 222, 357–364.
PORTO, J., ELIAS, P.Q. & CIARDI, A. 2023 Anisotropic electron heating in an electron cyclotron resonance

thruster with magnetic nozzle. Phys. Plasmas 30 (2), 023506.
PRIEST, E. & FORBES, T. 2000 Magnetic Reconnection: MHD Theory and Applications. Cambridge

University Press.
REED, D. 1995 Foundational electrodynamics and Beltrami vector fields. In Advanced Electromagnetism:

Foundations, Theory and Applications, pp. 217–249. World Scientific Publishing.
REN, Y., YAMADA, M., GERHARDT, S., JI, H., KULSRUD, R. & KURITSYN, A. 2005 Experimental

verification of the Hall effect during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett.
95 (5), 055003.

RICCA, R.L. 1997 Evolution and inflexional instability of twisted magnetic flux tubes. Solar Phys. 172 (1/2),
241–248.

RICCA, R.L. 2005 Inflexional disequilibrium of magnetic flux-tubes. Fluid Dyn. Res. 36 (4-6), 319–332.
RICCA, R.L. 2013 New energy and helicity bounds for knotted and braided magnetic fields. Geophys.

Astrophys. Fluid Dyn. 107 (4), 385–402.
RICCA, R.L. & MAGGIONI, F. 2014 On the groundstate energy spectrum of magnetic knots and links. J. Phys.

A Math. Theor. 47 (20), 205501.
ROBERTS, B. & WEBB, A.R. 1978 Vertical motions in an intense magnetic flux tube. Solar Phys 56 (1), 5–35.
SINGH, N., DEVERAPALLI, C. & KHAZANOV, G. 2006 Electrodynamics in a very thin current sheet leading

to magnetic reconnection. Nonlinear Process. Geophys. 13 (5), 509–523.

1009 A55-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.263


L. Kang and others

SMIET, C.B., CANDELARESI, S., THOMPSON, A., SWEARNGIN, J., DALHUISEN, J.W. & BOUWMEESTER,
D. 2015 Self-organizing knotted magnetic structures in plasma. Phys. Rev. Lett. 115 (9), 095001.

SOMOV, B.V. & KOSUGI, T. 1997 Collisionless reconnection and high-energy particle acceleration in solar
flares. Astrophys. J. 485 (2), 859–868.

SPICER, D.S. 1982 Magnetic energy storage and conversion in the solar atmosphere. Space Sci. Rev. 31 (4),
351–435.

SPRUIT, H.C. & ROBERTS, B. 1983 Magnetic flux tubes on the sun. Nature 304 (5925), 401–406.
STUIKYS, A. & SYKULSKI, J. 2018 Rapid multi-objective design optimisation of switched reluctance motors

exploiting magnetic flux tubes. IET Sci. Meas. Technol. 12 (2), 223–229.
TANG, J., DING, X., ZHANG, P., LEI, B., ZHAO, Z. & DUAN, Y. 2018 A highly efficient magnetically confined

ion source for real time on-line monitoring of trace compounds in ambient air. Chem. Commun. 54 (92),
12962–12965.

TAO, R., REN, H., TONG, Y. & XIONG, S. 2021 Construction and evolution of knotted vortex tubes in
incompressible Schrödinger flow. Phys. Fluids 33 (7), 077112.

TORIUMI, S. & HOTTA, H. 2019 Spontaneous generation of δ-sunspots in convective magnetohydrodynamic
simulation of magnetic flux emergence. Astrophys. J. Lett. 886, L21.

TZIOTZIOU, K., et al. 2023 Vortex motions in the solar atmosphere: definitions, theory, observations, and
modelling. Space Sci. Rev. 219 (1), 1.

XIONG, S., WANG, Z., WANG, M. & ZHU, B. 2022 A Clebsch method for free-surface vortical flow
simulation. ACM Trans. Graph. 41 (4), 116–13.

XIONG, S. & YANG, Y. 2019a Construction of knotted vortex tubes with the writhe-dependent helicity. Phys.
Fluids 31 (4), 047101.

XIONG, S. & YANG, Y. 2019b Identifying the tangle of vortex tubes in homogeneous isotropic turbulence.
J. Fluid Mech. 874, 952–978.

XIONG, S. & YANG, Y. 2020a Effects of twist on the evolution of knotted magnetic flux tubes. J. Fluid Mech.
895, A28.

XIONG, S. & YANG, Y. 2020b Evolution and helicity analysis of linked vortex tubes in viscous flows. Sci. Sin.
Phys. Mech. Astron. 50 (4), 040005.

YAMADA, M., KULSRUD, R. & JI, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82 (1), 603–664.
YANG, S., XIONG, S., ZHANG, Y., FENG, F., LIU, J. & ZHU, B. 2021 Clebsch gauge fluid. ACM Trans.

Graph. 40, 99.
YIN, L., DAUGHTON, W., KARIMABADI, H., ALBRIGHT, B.J., BOWERS, K.J. & MARGULIES, J. 2008

Three-dimensional dynamics of collisionless magnetic reconnection in large-scale pair plasmas. Phys. Rev.
Lett. 101 (12), 125001.

YOU, S., YUN, G.S. & BELLAN, P.M. 2005 Dynamic and stagnating plasma flow leading to magnetic-flux-
tube collimation. Phys. Rev. Lett. 95 (4), 045002.

YUAN, Y., SPITKOVSKY, A., BLANDFORD, R.D. & WILKINS, D.R. 2019 Black hole magnetosphere with
small-scale flux tubes – II. Stability and dynamics. Mon. Not. R. Astron. Soc. 487 (3), 4114–4127.

ZHAO, X. & SCALO, C. 2021 Helicity dynamics in reconnection events of topologically complex vortex flows.
J. Fluid Mech. 920, A30.

ZHUGZHDA, Y.D. 2000 Nonlinear waves in thin magnetic flux tubes in astrophysical plasma. Phys. Scr.
T84 (1), 159–162.

ZWEIBEL, E.G. & YAMADA, M. 2009 Magnetic reconnection in astrophysical and laboratory plasmas. Annu.
Rev. Astron. Astrophys. 47 (1), 291–332.

1009 A55-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.263

	1. Introduction
	2. Direct numerical simulation of MHD
	2.1. Numerical methods
	2.2. Initial configurations

	3. Magnetohydrodynamic flows in the FS frame field
	3.1. The FS frame fields
	3.2. Lorentz force in the FS frame field
	3.3. Material properties of integral curves in vector fields
	3.4. The temporal evolution of helicity

	4. Vortex and magnetic tube interactions
	4.1. Energy transfer in vortex and magnetic tube interactions
	4.2. Annihilation of vortex dipoles

	5. Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


