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ABSTRACT

We propose a theoretical method for constructing an initial two-component wave function that can be transformed into a knotted velocity
field with finite kinetic energy and enstrophy. The wave function is constructed using two complex-valued polynomials, with one determin-
ing the desired shape of the knotted central axis and the other encoding the twisting nature of vortex lines, which facilitates the study of helic-
ity conversions. We construct six knotted vortex fields with various centerline and twist helicity as initial conditions for direct numerical
simulation of incompressible Schr€odinger flow (ISF) in a periodic box. Although the evolution of morphological structure is similar for ISF
and classical viscous flow, with all the knots becoming untied after a short time to form one or more separate vortex rings, their statistics are
quite different. During the critical period of vortex reconnection, the increase in enstrophy is much more moderate in ISF than in viscous
flow, indicating that the Landau–Lifshitz term in ISF inhibits the energy cascade from large to small scales. We also find that the centerline
helicity changes dramatically during reconnection, which is consistent with the evolution of the geometrical shape of vortex lines.
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I. INTRODUCTION

In fluid mechanics, helicity, as an invariant in ideal flows,1 pos-
sesses certain conservation properties in viscous flows,2–4 as well as play-
ing a significant role in a wide range of applications. In particular,
helicity can measure the topological and geometrical relationships of the
links and knots in various physical systems, such as viscous fluids,5–9

magnetohydrodynamics flows,10–12 liquid crystals,13 optical,14 and bio-
logical structures,15–17 and cosmic strings.18,19 This property provides
promising insights into the principles of the breaking and reconnection
of flow structures and the mechanism of energy release.20,21

For the flow field of a vortex tube, helicity can be decomposed
into two components, namely, the centerline helicity generated by the
vortex axis and the twist helicity generated by the vortex line around
the axis.22 For an isolated vortex tube in viscous flow, the dynamics is
mainly determined by the centerline helicity.20,23 However, in the pres-
ence of nonconservative forces, such as electromagnetic21 and elastic
forces,24 the twist helicity cannot be ignored. In addition, the interac-
tion between vortex tubes can lead to conversion between centerline
and twist helicity.

Although tracking conversions of conserved quantities between
the two components of helicity can provide insight into certain fluid
phenomena,2 these conversions are challenging to study from a

numerical perspective.25 The total helicity is a simple volume integral
of the inner product of the velocity field and the vorticity field; how-
ever, separate calculation of the two components faces problems owing
to the difficulty of extracting the centerline helicity from the velocity–
vorticity field and the twist helicity associated with each vortex line
within the entire flow field.10 Therefore, it is not easy to characterize
the conversion between centerline and twist helicity based on the
velocity–vorticity field in a continuum dynamics approach.

By contrast, numerical algorithms are available for extracting the
tubular structure of wave function (complex function) fields26 to calcu-
late each component of the helicity. Wave functions are generally used
to describe quantum mechanical phenomena and, therefore, to
employ them for investigating the relationship between centerline hel-
icity and twist helicity; it is necessary to find a way of converting the
“continuum mechanics” described by the velocity–vorticity field to the
“quantum mechanics” described by the wave function. In this context,
the relationship between the velocity–vorticity field and the wave func-
tion can be considered to be analogous to that between macroscopic
mechanics and quantum mechanics, and this is a topic upon which
researchers have been working for many years.

There have been a few attempts to study the conversion between
the dynamical equations of fluid mechanics and Schr€odinger’s
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equation of quantum mechanics under certain conditions. Madelung
constructed a correspondence between the velocity field and a single-
component wave function and also proved the equivalence between a
single-component linear Schr€odinger equation and the compressible
Euler equations.27,28 Hasimoto converted a local induced approxima-
tion of vortex filaments into nonlinear Schr€odinger equations, as well
as proving that solitary waves can propagate on a vortex filament by
finding solitary wave solutions of a nonlinear Schr€odinger equa-
tion.29–31 These transformations provide us with a new perspective to
understand the relationship between continuum mechanics and quan-
tum mechanics. However, in the process of transformation, the fluid
system is significantly simplified. For example, in the Madelung trans-
formation, the fluid flow is described in terms of the gradient of the
phase angle of the wave function, which means that it is a potential
flow without vorticity. In Hasimoto’s approach, the fluid is assumed to
contain isolated vortex filaments that exhibit discontinuities through-
out the computational field, and consequently, it is not possible to
demonstrate complete continuous evolution of the fluid flow in the
quantummechanical system.

To represent a velocity field with nonzero vorticity, it is necessary
to increase the number of wave function components. Schoenberg
established a correspondence between the velocity field and a multi-
component wave function.32 Furthermore, Sorokin extended the
Madelung transformation to a two-component wave function, making
it possible to describe a flow with nontrivial vorticity or even nontrivial
helicity using a two-component Schr€odinger equation.33 Most
recently, Chern et al.34 simulated flow evolution using a two-
component Schr€odinger equation and demonstrated a considerable
number of classic fluid mechanical phenomena. The flow field
described by the two-component wave function, called incompressible
Schr€odinger flow (ISF), serves as the basis for our work here.

Compared with the dynamical evolution governed by the classical
Navier–Stokes equations, the simulation of ISF exhibits better structure
conservation and flow stability. The structure conservation of ISF is
guaranteed by the fact that the intrinsic dynamics is represented by a
Hamiltonian system,35 whose energy function is the kinetic energy of
the ideal fluid together with an energy of the Landau–Lifshitz type.36

Moreover, the Landau–Lifshitz energy enhances the stability of flow
evolution and the retention of tube-shaped vortex structures.
Therefore, to simulate ISF, we can adopt a computational scale smaller
than that for viscous flow governed by the Navier–Stokes equations
while maintaining the classic vortex structure in the simulation process.
However, owing to the necessity of constructing initial conditions
using an intricate numerical method to simulate the evolution of ISF,37

it is difficult to perform thorough quantitative investigations on the
physical parameters and quantities during ISF evolution.

This paper proposes a theoretical method for constructing an ini-
tial two-component wave function that can be transformed into a
knotted velocity field with arbitrary complexity. Inspired by the ratio-
nal map,38 we use two complex-valued polynomials of the complex
coordinates on the unit three-sphere to construct the wave function.
Specifically, the first polynomial is used to design the desired shape of
the knotted central axis, and the second is chosen to encode the twist-
ing nature of vortex lines. Thus, this method can be used to construct
a vortex tube with arbitrary geometry and topology specified by the
two given complex-valued polynomials, and it appears to be more flex-
ible for constructing complex vortex knots than those methods that

rely on an optimized Seifert surface.34,39,40 Since both polynomials
used to construct the wave function are tunable, this vortex construc-
tion can facilitate investigation of the conversion between centerline
helicity and twist helicity.41–43 Furthermore, the constructed fields
with finite kinetic energy and enstrophy can be used as the initial states
of numerical simulations.

As examples, we construct six initial knotted vortex tubes with
different centerline and twist helicity. These knotted fields are used as
initial conditions in the direct numerical simulation (DNS) of ISF in a
periodic box. Specifically, we simulate ISF using a pseudospectral
method44 and quantitatively analyze the dynamical information dur-
ing the evolution of knotted vortex tubes. Similar to the evolution in
viscous flow,20,21 the knotted vortex tubes in ISF involve significant
aspects of vortex dynamics, such as vortex knot untying,45

reconnection,46–50 and breakdown.51 Based on the numerical results,
we discuss the relationship, similarities, and differences between ISF
and viscous flow.21,52

The outline of this paper is as follows. In Sec. II, we introduce the
mathematical definitions of Clebsch maps and spherical Clebsch
maps. In Sec. III, we propose a theoretical method to construct the ini-
tial spherical Clebsch maps for velocity fields with knotted structures
and computable helicity components and verify its feasibility with sev-
eral numerical examples. In Sec. IV, we introduce the governing equa-
tions of ISF and the transformation relationship between wave
function and velocity field. In Sec. V, we visualize and characterize the
numerical results. Some conclusions are drawn in Sec. VI.

II. CLEBSCH MAPS AND SPHERICAL CLEBSCH MAPS
A. Clebschmaps

Established as a Lagrangian description of fluid dynamics in an
Eulerian reference frame, a Hamiltonian formulation was first intro-
duced by Clebsch as the Clebsch representation.53,54 In the original
Clebsch representation,53 the velocity Clebsch potentials ðk;/;lÞ are
used to represent the velocity in three-dimensional Euclidean space
R3 as

u ¼ k$l� $/ (1)

and the vorticity Clebsch potentials ðk; lÞ are then used to represent
the vorticity x ¼ $� u as

x ¼ $k� $l: (2)

From Eq. (2), we can see that the isosurfaces of k and l are vortex
surfaces,55–57 that is, they satisfy x � $k ¼ 0 and x � $l ¼ 0, respec-
tively. Thus, Clebsch maps contain important geometric information
about the flow fields, which provides an appealing perspective for fluid
visualization,35,58 analysis,59 and simulation.60,61 However, the original
Clebsch maps Eqs. (1) and (2) cannot describe a flow field with non-
zero helicity, which imposes limits on their application to natural
three-dimensional flows.

B. Spherical Clebschmaps

Based on the pioneering work by Kuznetsov and Mikhailov,62

Chern et al.34,37 proposed spherical Clebsch maps, which overcome
the disadvantage of the original Clebsch maps, namely, their inability
to represent a velocity–vorticity field with nonzero helicity.
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Specifically, the spherical Clebsch maps write the velocity in the form
of wave functions,

w ¼ w1;w2½ �T ¼ aþ ib; cþ id½ �T (3)

with a normalization constraint

hw;wiR ¼ 1 (4)

and a solenoidal constraint

hDw; iwiR ¼ 0: (5)

Here, i represents the imaginary unit, hw;/iR ¼ Reð/1w1 þ /2w2Þ;
Reðf Þ denotes the real part of a complex-valued function f, and
a; b; c; d are all real-valued. The vorticity Clebsch potentials, also called
the spin vector, are then expressed in the form of a unit vector field
s ¼ ðs1; s2; s3Þ and connected with the wave function by the Hopf
fibration63

s1 ¼ a2 þ b2 � c2 � d2;

s2 ¼ 2ðbc� adÞ;
s3 ¼ 2ðacþ bdÞ:

8><
>: (6)

In spherical Clebsch maps, the velocity u is represented as

u ¼ �hh$w; iwiR ¼ �hða$b� b$aþ c$d � d$cÞ; (7)

where �h is a parameter controlling quantization of velocity–vorticity,
and the vorticity x is represented as

x ¼ �h
2
ðs1$s2 � $s3 þ s2$s3 � $s1 þ s3$s1 � $s2Þ: (8)

We remark that as with original Clebsch maps, the potential
functions (6) are exact vortex surface fields owing to

x � $sp ¼ 0; p ¼ 1; 2; 3; (9)

since the vortex lines integrated from points on isosurfaces of sp are
perfectly tangent to the isosurfaces. Thus, the isosurfaces of sp can be
used as the initial condition for the evolution of vortex surfaces in a
Lagrangian-like study of vortex dynamics.52,64–69

In addition, Eq. (6) fulfills gauge invariance, which means that w
and its gauge transformation e�iq=�hw correspond to the same spin vec-
tor field s, where q is a scalar gauge function. Moreover, the gauge
transformation of the wave function w ! e�iq=�hw corresponds to the
gauge transformation of the velocity u ! u� $q, and the incompres-
sibility condition on the velocity, $ � u ¼ 0, is equivalent to Eq. (5).

Figure 1 summarizes the equations introduced above. It shows the
transformations between the corresponding wave functions w, spin vec-
tor s, velocity u, and vorticity x of a vortex ring in different spaces.70

The upper left figure depicts a complex structure that is the two-
component wave function on the unit three-sphere S3. Through the
Hopf fibration (6), the spin vector s can be obtained on the unit two-
sphere S2, which is represented by the patch on the upper right sphere.
Given the wave function, we can also calculate the velocity (7), which is
shown in the bottom left box. The blue tube with the dotted outline
shows the vortex tube.71 The orange lines around the tube represent the
integral lines of u. Given the formulation of u, we use the definition
x ¼ $� u to obtain the vorticity, shown in the bottom right box. In
the vorticity field, the vortex tube is represented by the blue tube with

the solid outline, and the dotted orange lines represent the velocity lines.
x can also be defined in terms of the spin vector as Eq. (8).

III. CONSTRUCTION OF SPHERICAL CLEBSCH MAPS
A. Theoretical construction of spherical Clebsch maps

This section proposes a novel method to construct initial spheri-
cal Clebsch maps based on the rational maps in Kedia et al.38 The
method consists of five steps:

1. Transform the Cartesian coordinates ðx; y; zÞ 2 R3 in Euclidean
space into the coordinate system ða; bÞ 2 C2 in two-component
complex space.

2. Construct a polynomial P to represent the twist of the vortex
tube in the coordinate system ða; bÞ.

3. Construct a scalar function Q in the coordinate system ða; bÞ to
represent the geometric position of the vortex axis.

4. Use Eq. (4) to normalize the wave function.
5. Use Eq. (5) to ensure a divergence-free projection.

The details of this construction are as follows.

1. Transformation of the coordinate system

First, we map the coordinate system from the Euclidean space
R3 to the two-component complex spaceC2

a ¼ 2ðX þ iYÞf ðRÞ
1þ R2

;

b ¼ 2ðZ � iÞf ðRÞ þ ð1þ R2Þi
1þ R2

;

8>>><
>>>:

(10)

where X ¼ kxðx � xcÞ; Y ¼ kyðy � ycÞ; Z ¼ kzðz � zcÞ are scaled
and centralized coordinates with scaling numbers ðkx; ky; kzÞ and cen-
ter coordinates ðxc; yc; zcÞ, R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2 þ Z2
p

is the scaled distance
from ðxc; yc; zcÞ, and the function f(R) decays monotonically with

FIG. 1. Relationship between velocity u, vorticity x, wave function w, and spin
vector s.
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f ð0Þ ¼ 1 and limR!1f ðRÞ ¼ 0. We remark that Eq. (10) maps a
Euclidean space to a compact space, since

jaj2 þ jbj2 ¼ 1þ 4f ðf � 1Þ
1þ R2

� 1: (11)

Thus, Eq. (10) maps a trivial structure in infinite space to a complex
knotted structure in finite space.38

2. Complex polynomial function P

P is constructed to represent the twist of the vortex tube, i.e., the
degree to which the vortex filament in the tube spirals around the axis.
In general, we construct polynomials

P ¼ ak (12)

to represent the degree of twist degree of the vortex tube. The
larger the value of k, the more twisted is the vortex tube. It is
worth noting that since normalization affects the degree of twist,
we cannot precisely and quantitatively describe the influence of k
on the twist helicity.

3. Complex polynomial function Q

We construct the wave function Q to represent the geometric
shape of the vortex structure, with the contour line corresponding to
Q¼ 0 representing the vortex axis of the vortex tube. Wei�mann
et al.26 have provided a numerical method to construct Q for a given
velocity field, in which w is determined by solving the optimization
problem

Q ¼ argmin
w

j�h$w� iuwj;

s:t:
ð
X
jwj dX ¼ 1;

8>><
>>: (13)

where X denotes the entire flow domain. We remark that the con-
vexity of such optimization problems has not been proved, and it
is unknown whether the numerical solution for the wave function
is smooth over the whole field. Thus, there are still some theoreti-
cal and technical problems that need to be addressed to solve Eq.
(13) directly. In this paper, we focus on the construction of Q
based on an analytic expression, in which we construct the ana-
lytic expression for the wave function Q to represent the knotted
vortex filaments of a series of complex geometrical topologies.
The polynomial function

Q ¼ Qða; b; �a; �bÞ; (14)

in which a and b are given by Eq. (10), can express a series of knotted
link structures. For example, the zero level line ofQ ¼ a3 þ b2 is a tre-
foil knot.

4. Normalization

We normalize P andQ as

P� ¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPj2 þ jQj2

q ; Q� ¼ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPj2 þ jQj2

q : (15)

5. Pressure projection

Finally, we take the divergence-free projection of Eq. (15) as

w1 ¼ P�e�iq=�h; w2 ¼ Q�e�iq=�h; (16)

where the pressure-like variable q is calculated as

Dq ¼ �hhDw; iwiR: (17)

We remark that we use Eqs. (10), (12), and (14)–(16) to construct
the knotted wave function and compute the knotted velocity field
through Eq. (7). Note that although we have alternative ways to con-
struct knotted fields numerically or analytically, we cannot analytically
solve for the wave function from an arbitrary given velocity field. The
reason is that for a general velocity field, there is no known way to
solve Eq. (7) analytically, and sometimes the solution does not even
exist. If we want to get an approximate wave function from a given
velocity field, we can obtain a numerical solution for the wave function
by minimizing the Dirichlet energy37

E�ðwÞ ¼
ð
X

1

�h2
ju� �hh$w; iwij2 þ �

4
j$sj2

� �
dX; (18)

where � is a regularization parameter and dX is the volume element.
However, each component of the two-component wave function con-
structed by this method has no physical significance.

B. Numerical cases

We construct six cases to study the evolution of knots with differ-
ent shapes and twists. Since the polynomials Pða;b; �a; �bÞ and
Qða;b; �a; �bÞ control the twist and shape of the knots, respectively, we
set different initial conditions for the numerical simulation, namely,
ðP;QÞ ¼ ðam; al þ b2Þ, m¼ 1, 3, 5, l¼ 3, 5, and we set the scaling
numbers, the center coordinates, and the decay function in Eq. (10)
as ðkx; ky; kzÞ ¼ ð1:2; 1:2; 1:6Þ; ðxc; yc; zcÞ ¼ ðp; p; 0:6pÞ, and f ðRÞ
¼ exp ð�R8=94Þ, respectively. The parameters kx; ky; kz and xc; yc; zc
are chosen to ensure that the size and position of the constructed knots
are reasonably distributed in the flow domain X. We initialize kx; ky
less than kz referring to the settings in other papers.20,21

The important parameters and statistics of the constructed initial
fields are summarized in Table I, including the volume-averaged kinetic
energy Eu ¼

Ð
EðkÞ dk with energy spectrum E(k), the volume-averaged

enstrophy Ex ¼ 2
Ð
k2EðkÞ dk, vorticity flux C along the vortex axis,

and the helicity H ¼ ÐXh dX with helicity density h ¼ u � x. It can be
seen that the constructed fields have finite kinetic energy and enstrophy,
and so they can be used as the initial states of the numerical simulation.
In addition, these constructed fields have tunable helicity, and so the
effect of different helicity on the dynamic evolution of the fluid can be
compared. Moreover, we also show in Table I the values of the different
helicity components, which we discuss in detail in Sec. IIIC.

Figure 2 shows the isosurfaces of s1 of initial knotted vortex tubes
with six different wave functions w summarized in Table I. The isosur-
faces are color-coded by the helicity density h. Some vortex lines are
integrated on the surfaces. We observe that the vortex lines are almost
on the isosurface of s1, which is guaranteed by Eq. (9). The isosurfaces
of s1 in the first row have the shape of a trefoil knot withQ ¼ a3 þ b2,
while those the second row have the shape of a cinquefoil knot with
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Q ¼ a5 þ b2. Meanwhile different columns with different P ¼ a; a3

and a5 correspond to different intrinsic twist.
Figure 3 plots the isosurfaces of sp, p¼ 1, 2, 3, with different con-

tour values of the trefoil and cinquefoil knotted vortex tubes (cases T1
and C1 in Table I). In Fig. 3(a), the isosurfaces of sp, p¼ 1, 2, 3, show
that different sp identify approximately the same knotted structures.
Some vortex lines integrated on the surfaces also agree with Eq. (9).
Figure 3(b) plots the isosurfaces of s1 with different contour values
from inside to outside.

C. Helicity of the constructed fields

An important feature of spherical Clebsch maps is that they can
characterize a flow field with nonzero helicity. In particular, we can
write Eq. (3) in hyperspherical coordinate form as

ða; b; c; dÞ ¼ ðcos/1; sin/1 cos/2; sin/1 sin/2 cos/3;

sin/1 sin/2 sin/3Þ; (19)

and substituting this into Eqs. (6)–(8) yields

u ¼ �h½cos/2$/1 � cos/1 sin/1 sin/2$/2

þ sin/1 sin/2ð Þ2$/3�;
x ¼ 2�h sin/1 sin/2 sin/1 cos/2$/2 � $/3ð

�cos/1 sin/2$/3 � $/1 þ sin/1$/1 � $/2Þ:

8>>>><
>>>>:

(20)

Then, using Eq. (20), we obtain u � x ¼ 2�h2 sin/2
1 sin/2$/1

�ð$/2 � $/3Þ. Finally, the helicity can be expressed as

H ¼
ð
u � x dX ¼ 2�h2

ð
sin/2

1 sin/2$/1 � ð$/2 � $/3Þ dX

¼ ð2p�hÞ2nw; (21)

where nw is the mapping degree of the wave function w. All the com-
putations are performed in a box with periodic boundary conditions.
To make the continuity of the wave function compatible with the
boundary conditions, nw must theoretically be an integer. It can be
seen from Table I that this property is strictly satisfied in the con-
structed initial knotted vortex tubes.

FIG. 2. Isosurfaces of s1 of initial knotted
vortex tubes with six different wave func-
tions w. The polynomial functions P and
Q for constructing w in (16) are summa-
rized in Table I. The isosurfaces are color-
coded by the helicity density h. Some vor-
tex lines are shown on the surfaces. The
corresponding case labels in Table I and
isocontour values are (a) T1, s1 ¼ 0:85;
(b) T3, s1 ¼ 0:6; (c) T5 s1 ¼ 0:25; (d) C1
s1 ¼ 0:93; (e) C3 s1 ¼ 0:8; and (f) C5
s1 ¼ 0:56, respectively.

TABLE I. Summary of parameters and statistics in the numerical construction of six different initial knotted fields.

Cases T1 T3 T5 C1 C3 C5

Polynomial I P a a3 a5 a a3 a5

Polynomial II Q a3 þ b2 a3 þ b2 a3 þ b2 a5 þ b2 a5 þ b2 a5 þ b2

Kinetic energy Eu 0.0015 0.0033 0.0047 0.0017 0.0035 0.0052
Enstrophy Ex 0.0154 0.0684 0.203 0.0173 0.0611 0.164
Vorticity flux C 0.625 0.628 0.633 0.627 0.628 0.628
Writhe Wr 3.49 3.49 3.49 6.78 6.78 6.78
Scaled helicity H=ð2p�hÞ2 2 6 10 2 6 10
Scaled centerline helicity HC=ð2p�hÞ2 3.45 3.49 3.54 6.77 6.78 6.79
Scaled twist helicity HT=ð2p�hÞ2 –1.45 2.51 6.46 –4.77 –0.783 3.20
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The helicity of a knotted vortex tube consists of two parts. One is
the centerline helicity HC ¼ C2Wr , which is completely determined
by the central vortex axis, where C is the strength of the toroidal vor-
ticity flux along the central axis C and the writhe is defined as

Wr ¼ 1
4p

þ
C

þ
C

TðsÞ � Tðs0Þ� � � cðsÞ � cðs0Þ� �
jcðsÞ � cðs0Þj3 ds ds0: (22)

Here, s is the arc length parameter, c is the parametric equation of the
central vortex axis, and T is the unit tangent of the central vortex axis
C. The other part is the twist helicity HT ¼ C2Tw, which measures the

degree of twist of vortex lines in the tube around the vortex axis. Also,
the twist helicity HT is the difference between the total helicity and the
centerline helicity,HT ¼ H � HC.

To calculate the helicity component of the flow field, we need to
extract the vortex axis of the vortex tube through the wave function.
We describe the method for extracting the central vortex axis in
Appendix A. In our construction, the vortex axis can be understood as
the zero contour of w2, i.e., w2 ¼ cþ id ¼ 0.

Figure 4 shows a schematic of the extraction of the vortex axis
from the isosurface of w2 of the trefoil and cinquefoil knots at the ini-
tial time. We can observe from Figs. 4(a) and 4(e) that the isosurface
of c has the shape of a knotted tube, while the isosurface of d is a
twisted surface whose interior intersects the vortex axis of the knot to
form a Seifert surface. The line of intersection of the two scalar fields c
and d forms the central vortex axis. The area passed by the vortex axis
is usually the place where the height of the isosurface changes sharply.
By contrast, the places where the height changes are very small, such
as the top of the c¼ 0 isosurface and the outer region of the d¼ 0 iso-
surface, have no vortex axis.

IV. NUMERICAL SIMULATION
A. Landau–Lifshitz modified fluid

We study the evolution of the knotted vortex tubes constructed
using spherical Clebsch maps in a Landau–Lifshitz modified fluid. The
governing equations are

@u
@t

þ u � $u ¼ � 1
q
$Pþ f LL;

$ � u ¼ 0;

8><
>: (23)

where t is the time and q¼ 1 is the constant density,

P ¼ p
�h
� �h

2
j$wj2 � �h

4
hs;Dsi þ 1

2
juj2; (24)

with pressure p, and the Landau–Lifshitz force is34

FIG. 4. Extraction of the vortex axis from the isosurface of w2 of the trefoil knot and cinquefoil knot at the initial time, with (a)–(d) corresponding to T1, and (e)–(h) to C1: (a)
and (e) c¼ 0 isosurface; (b) and (f) d¼ 0 isosurface; (c) and (g) intersection line of c¼ 0 and d¼ 0 isosurfaces; (d) and (h) vortex axis.

FIG. 3. Isosurfaces of sp, p¼ 1, 2, 3, with different contour values of the trefoil
knotted vortex tube (cases T1 and C1 in Table I). (a) and (c) Isosurfaces of s1
¼ 0:8 (red), s2 ¼ 0:9 (blue), and s3 ¼ 0:95 (cyan). Some vortex lines are inte-
grated on the surfaces. (b) and (d) Isosurfaces of s1 with contour values of 1, 0.8,
0.5, and –0.8 from inside to outside.
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f LL ¼ � �h2

4
ð$sÞ � Ds: (25)

Substituting Eq. (7) into Eqs. (23) and (25) yields the incompressible
Schr€odinger flow (ISF) (the derivation is in Appendix B),

@w

@t
¼ i

�h
2
r2w� i

1
�h
pw;

hDw; iwiR ¼ 0;

jwj ¼ 1;

8>>><
>>>:

(26)

with appropriate initial condition wðx; t ¼ 0Þ ¼ w0ðxÞ and boundary
condition (e.g., periodic boundary condition). Thus, we can use the
wave functions to simulate ISF in Eq. (26) rather than the velocity field
in Eq. (23).34,37

B. Pseudospectral method

DNS of ISF is performed to solve Eq. (26) in a periodic box of
side L ¼ 2p using a standard pseudospectral method.44,72 The compu-
tational domain X is discretized on uniform grid points N3. Aliasing
errors are removed using the two-thirds truncation method with maxi-
mum wavenumber kmax � N=3.

Specifically, the Fourier coefficient ŵðk; tÞ ¼ FðwÞ with wave-
number k is advanced in time using an analytic approach as

ŵ
�ðk; t þ DtÞ ¼ exp � 1

2
�hk2Dt

� �
ŵðk; tÞ; (27)

where k ¼ jkj denotes the wavenumber magnitude and Dt is the
time step. The inverse Fourier transform operator F�1 is then used

FIG. 5. Statistics of the fluid field with three grid resolutions N3 ¼ 1283; 2563 for the case T1 in Table I. (a) Kinetic energy spectrum at t¼ 10. (b) The temporal evolution of
the volume-averaged kinetic energy. (c) The temporal evolution of the writhe.

FIG. 6. Temporal evolution of normalized kinetic energy, enstrophy, and writhe: (a) normalized kinetic energy of T1, T3, and T5 from Table I with Q ¼ a3 þ b2; (b) normalized
enstrophy of T1, T3, and T5 from Table I with Q ¼ a3 þ b2; (c) normalized writhe of T1, T3, and T5 from Table I with Q ¼ a3 þ b2; (d) normalized kinetic energy of C1, C3,
and C5 from Table I with Q ¼ a5 þ b2; (e) normalized enstrophy of C1, C3, and C5 from Table I with Q ¼ a5 þ b2; (f) normalized writhe of C1, C3, and C5 from Table I with
Q ¼ a5 þ b2.
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to transform ŵ
�ðk; t þ DtÞ to physical space: w�ðx; t þ DtÞ

¼ F�1½ŵ�ðk; t þ DtÞ�. After that, w�ðk; t þ DtÞ is normalized to give

w��ðx; t þ DtÞ ¼ w�ðx; t þ DtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihw�ðx; t þ DtÞ;w�ðx; t þ DtÞiR
p : (28)

Finally, the wave function w��ðx; t þ DtÞ is projected to satisfy the
solenoidal condition (5) as wðx; t þ DtÞ ¼ w��ðx; t þ DtÞ exp ð�iqÞ,
where q is calculated as

q ¼ F�1 � ik � F u��ðx; t þ DtÞ½ �
k2

� �
; (29)

with

u��ðx; t þ DtÞ ¼ ��hhrw��ðx; t þ DtÞ; iw��ðx; t þ DtÞiR
and

rw��ðx; t þ DtÞ ¼ F�1fikF w��ðx; t þ DtÞ½ �g:

FIG. 7. Isosurfaces of s1 in the temporal
evolution of different trefoil flux tubes with
initial conditions T1, T3, and T5 in Table I
at t¼ 1, 2, 4, and 8. (a) T1, t¼ 1; (b) T3,
t¼ 1; (c) T5, t¼ 1; (d) T1, t¼ 2; (e) T3,
t¼ 2; (f) T5, t¼ 2; (g) T1, t¼ 4; (h) T3,
t¼ 4; (i) T5, t¼ 4; (j) T1, t¼ 8; (k) T3,
t¼ 8; (l) T5, t¼ 8. All the isosurfaces are
color-coded by the helicity density. The
isocontour values of s1 are 0.85, 0.6, and
0.25 for T1, T3, and T5, respectively.
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V. NUMERICAL RESULTS
A. Grid convergence

To check grid convergence, we set the initial condition as T5
from Table I and test the DNS on three different numbers of grid
points: N3 ¼ 1283, 2563, and 5123. Figures 5(a), 5(b), and 5(c) plot the
kinetic energy spectrum E(k) at t¼ 10 (where k is the wavenumber),
the temporal evolution of the volume-averaged kinetic energy Eu, and
the writhe, respectively, with three grid resolutions. We see that all
curves converge to the curve with grid resolution N3 ¼ 5123, and the

curves with N3 ¼ 2563 and 5123 almost coincide. In the rest of this
paper, we takeN3 ¼ 2563 in the numerical simulations.

B. Evolution of flow fields

Figures 6(a) and 6(d) plot the temporal evolution of the normalized
kinetic energy EuðtÞ=Euðt ¼ 0Þ. We observe that the normalized kinetic
energy decreases monotonically (except for a few minor peaks) in all six
cases, which is similar to the energy dissipation in viscous fluids. We
remark that the Hamiltonian energy �h2k$wk2L2=2 of ISF is conserved

FIG. 8. Isosurfaces of s1 in the temporal
evolution of different trefoil flux tubes with
initial conditions C1, C3, and C5 in Table I
at t¼ 0.5, 1, 3, and 6. (a) C1, t¼ 0.5; (b)
C3, t¼ 0.5; (c) C5, t¼ 0.5; (d) C1, t¼ 1;
(e) C3, t¼ 1; (f) C5, t¼ 1; (g) C1, t¼ 3;
(h) C3, t¼ 3; (i) C5, t¼ 3; (j) C1, t¼ 6;
(k) C3, t¼ 6; (l) C5, t¼ 6. All the isosurfa-
ces are color-coded by the helicity density.
The isocontour values of s1 are 0.85, 0.6,
and 0.25 for C1, C3, and C5, respectively.
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during evolution,34,37 and so kinetic energy is gradually converted to
Landau–Lifshitz energy ð�h2k$wk2L2 � kuk2L2Þ=2 ¼ �h2k$sk2L2=8.

Figures 6(b) and 6(e) show the temporal evolution of the normal-
ized enstrophy ExðtÞ=Exðt ¼ 0Þ, which is quite different from its evo-
lution in viscous flows.45,46,73,74 In all the examples, the normalized
enstrophy experiences a rapid decline at first, followed by an upward
trend that is accompanied by some fluctuations. These fluctuations are
related to topological deformation of the vortex tubes. However, dur-
ing the critical period of vortex reconnection, the rise in enstrophy is
much more moderate than that in viscous flow, indicating that the
Landau–Lifshitz term inhibits the energy cascade from large to small
scales.20,21,23

In our simulation, the vorticity flux C is a conserved quantity
(see Appendix C), so the centerline helicity is completely determined
by Wr. Figures 6(c) and 6(f) show the temporal evolution of the nor-
malized writhe Wr=Wrðt ¼ 0Þ. It is worth noting that although the
kinetic energy and enstrophy vary significantly over time, the helicity
defined as the integral of the inner product of velocity and vorticity is
conserved because the flow can be written in a conservative form con-
vected by the virtual velocity.75 Therefore, the change in centerline hel-
icity is converted to twist helicity. As can be seen from Fig. 6(c), for the
trefoil knot example, the centerline helicity drops sharply within a
short time and varies little before and after this decline. However, in
the cinquefoil knot example in Fig. 6(f), the centerline helicity has two
sharp declines. These declines in centerline helicity are associated with
the untying of the knot, which we will discuss together with the evolu-
tion of the knotted field.

In the later stage of evolution, the statistics tend to be stable,
which means that the flow is in an equilibrium state of the energy cas-
cade. Thus, although there is no energy input to the dynamical system,
it behaves like equilibrium turbulence. From another perspective, the
Landau–Lifshitz term also provides a forcing condition to simulate
equilibrium turbulence.

Despite the difference in flow statistics, the evolution of the mor-
phological structure of ISF resembles the evolution of knotted vortex
tubes in viscous flow. Figures 7 and 8 depict the isosurfaces of s1 in the
temporal evolution of different trefoil and cinquefoil flux tubes with
initial conditions given in Table I. All the isosurfaces are color-coded

by helicity density h, which reflects the twisting of local vortex
filaments.

Similar to the evolution of trefoil flux tubes in viscous flow, all
the trefoil vortex knots first untie into upper and lower vortex rings,
with significant vortex reconnection.20,21,76–78 Specifically, in the initial
stage of vortex reconnection, the vortex tubes in the central part of the
trefoil are stretched and then gradually meet, but the topological struc-
ture of the knot does not change. Then, the stretched vortex tubes
begin to break, with the speed of breaking depending on the twist hel-
icity. Finally, the trefoil begins to untie, forming an upper vortex ring
and a lower vortex ring. These two vortex rings gradually change from
wavy to flat, which indicates that the center vortex axes become less
distorted, which is consistent with the decreasing centerline helicity in
Fig. 6(c). We remark that without the participation of viscous forces,
intrinsic helicity plays a greater role in flow evolution, which directly
changes the reconnection time and the structure scale of the recon-
nected vortex.

There are some differences in vortex reconnection between trefoil
and cinquefoil flux tubes. In cases C1 and C3, the cinquefoil tubes
untie twice, eventually forming a state of three vortex rings, which can
also be observed in viscous flow.20 Unlike C1 and C3, in C5, a third
vortex ring is not formed, and the underlying mechanism may be one
in which the intrinsic helicity makes the knotted vortex tube more dif-
ficult to untangle.

We also plot the vortex lines inside the cinquefoil knot C3 at dif-
ferent times in Fig. 9. From Fig. 9(a), we can see that the vortex lines
inside the vortex tube are nearly parallel at the initial time. The geo-
metric parallelism of the vortex lines indicates that the flow field has a
small twist helicity (see Table I). With the evolution of the knotted
field, more and more local twisting filamentous structures appear, as
shown in Figs. 9(b)–9(d), indicating that the twist is gradually increas-
ing, which is also consistent with the decreasing centerline helicity in
Figs. 6(c) and 6(f).

VI. CONCLUSIONS

We have developed a novel method for constructing the initial
wave function of knotted vortex tubes to study the evolution of ISF,
which is a newly proposed quantized fluid governed by a nonlinear

FIG. 9. Internal vortex lines of the cinquefoil knot C3 at different times: (a) t¼ 0.5; (b) t¼ 1; (c) t¼ 3; (d) t¼ 6. The vortex lines are color-coded by helicity density.
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Schr€odinger equation for a normalized two-component wave function.
The constructed fields have finite kinetic energy and enstrophy and
can, therefore, be used as the initial states for numerical simulation of
fluid evolution. In addition, these constructed fields have tunable helic-
ity, thus providing a natural setting for studying helicity.

We set up six knotted vortex tubes with different centerline
and twist helicity as the initial conditions for ISF evolution. For the
constructed initial wave functions, we studied the evolution of ISF
using DNS based on a pseudospectral method. Similar to the evolu-
tion of knotted vortex tubes in viscous flow,20,21 all the initial knots
become untied after a short time to form one or more separate vor-
tex rings. In contrast to the morphological structure evolution, the
difference in statistics is obvious. During the critical period of dis-
connection and reconnection of the vortex tubes, the rise in enstro-
phy is much more moderate than that in viscous flows. The
Landau–Lifshitz term inhibits the energy cascade from large to
small scales;20,21,23 thus, the dissipation of kinetic energy in ISF is
relatively small. On the other hand, the decay of centerline helicity
during reconnection is remarkable, which agrees with the topologi-
cal changes in vortex lines.

In future work, the construction method for knotted fields will be
used to study vortex/magnetic tubes in highly complex configurations.
In addition, simulations of ISF with a broader range of initial condi-
tions and flow parameters will be compared to explore the internal
dynamics of flow evolution. Furthermore, we know that ISFs are gov-
erned by wave field-based incompressible Schr€odinger equations,
while the viscous flows are governed by the velocity–vorticity field-
based Navier–Stokes equations. However, since the constructed initial
wave field can be directly converted into the velocity–vorticity field by
(6)–(8), we can quantitatively compare the evolution of the knotted
vortex tubes in viscous flows and the evolution of ISFs under the same
initial conditions. This comparison is significant in helping us to
understand the relationship between Landau–Lifshitz and viscous
dynamics.
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APPENDIX A: EXTRACTION OF VORTEX AXIS
FROM w2

To calculate the centerline helicity of the vortex tube, we need
to extract its central vortex axis. In our construction, the central
vortex axis of the vortex tube is completely determined by the zero
contour line of the wave function component w2 (i.e., the line of
intersection of the c¼ 0 and d¼ 0 isosurfaces). We use the method
from Ref. 26 to extract the zero contour of w2. The basic idea is to
use the value of the wave function stored in the center of the grid to
get the zero set of the wave function through interpolation. Here,
we have made a general assumption that the wave function has
zeros only in the plane formed by the centers of the adjacent grids.
In Fig. 10(a), the centers of adjacent grids form a quadrilateral.
According to the relationship between the zero point and the quad-
rilateral, there are two possibilities for the relationship: (1) in Fig.
10(b), the zero point falls inside the quadrilateral composed of adja-
cent grids; (2) in Fig. 10(c), the zero point falls outside the quadri-
lateral. These two cases can be distinguished by calculating the
winding number of the four vertices of the quadrilateral. When the
zero point falls inside the quadrilateral, we can calculate the posi-
tion of the zero point by bilinear interpolation. The method for
extracting the zero contour is as follows.

First, we find all the quadrilaterals [see the quadrilaterals fijkl in
Fig. 10(a), on which the discrete values of the wave functions on the
four vertices are wk

2; w
l
2; w

m
2 , and wn

2 , respectively] that intersect the
vortex axis by traversing the centers of adjacent grids in all the
regions. Specifically, we can determine whether the vortex axis
intersects the quadrilateral by calculating the winding number of
the quadrilateral

nklmn ¼ 1
2p

arg
wl
2

wk
2

 !
þ arg

wm
2

wl
2

 !
þ arg

wn
2

wm
2

 !
þ arg

wk
2

wn
2

 !2
4

3
5:
(A1)

When the vortex axis intersects a quadrilateral, the origin
ðc ¼ 0; d ¼ 0Þ must fall within the quadrilateral, and so the winding
number of the plane must be nonzero.

We then calculate the intersection of the vortex axis and the
quadrilateral fijkl. This intersection point can be determined by
bilinear interpolation

0¼ð1�k2Þ ð1�k1Þwkþk1wlÞþk2ðð1�k1Þwmþk1wn

� �
; (A2)

FIG. 10. (a) Quadrilateral formed by the centers of adjacent grids. (b) The origin falls within the quadrilateral. (c) The origin falls outside the quadrilateral.
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where k1 and k2 are the interpolation coefficients. We can compute
k1 and k1 by solving the linear equation to get the intersection
point. Finally, the order in which intersections connect is deter-
mined by the sign of the winding number.

For all the grids intersecting the vortex axis, we can find at least a
pair of points that are the intersection points of the vortex axis and a
grid. The sign of nklmn in (A1) exactly represents the entry
(nklmn ¼ �1) and exit (nklmn ¼ þ1) of the vortex axis. Connecting the
intersection points of opposite signs in each grid gives the desired vortex
axis. After extracting the discrete points of the central vortex axis, we
use the least squares method to calculate the physical quantities needed.
For the constructed cases, the values are listed in Table I.

APPENDIX B: DERIVATION OF ISF EQUATION

This appendix shows that Eq. (23) is equivalent to Eq. (26).
Inspired by the method given in Ref. 34, we propose the following
proof. Assuming that the wave function satisfies Eq. (26), we start
from the quaternionic form of the wave function and use the rela-
tionship between the rotation vector s, the velocity field u, and the
wave function w to eventually obtain Eq. (23). The quaternionic
form of the wave function w is

w ¼ aþ biþ cjþ dk; (B1)

where i; j, and k are the basis elements of the imaginary part of the
quaternion. Based on the relationship between the rotation vector s
and the wave function w shown in Fig. 1, the spin vector and its
gradient can be expressed as

s ¼ �wiw;

$s ¼ ð$�wÞiwþ �wið$wÞ:

(
(B2)

From Eq. (7), we obtain another form of the wave function repre-
sentation of the velocity

u ¼ �h
2
ð$�wiw� �wi$wÞ: (B3)

From Eqs. (B2) and (B3), we obtain the gradient of w

$w ¼ iw
u
�h
� 1
2
$s

� �
: (B4)

We then calculate the divergence of Eq. (B4). We combine
Eqs. (B2), (B3), and the zero-divergence condition on the velocity
field to obtain the Laplacian of w

r2w ¼ ið$wÞ � u
�h
� 1
2
ið$wÞ � ð$sÞ � 1

2
iwDs

¼ ið$wÞ � u
�h
þ ið$wÞ � u

�h
� $�wiw

� �
� 1
2
w�wiwDs

¼ 2i
�h
u � $w� ið$wÞ � ð$�wiwÞ � 1

2
wsDs

¼ 2i
�h
u � $wþ w j$wj2 � 1

2
sDs

� �

¼ 2i
�h
u � $wþ w j$wj2 þ 1

2
hs;Dsi

� �
� 1
2
ðs� DsÞ

� �
: (B5)

In Eq. (B5), hw;/i ¼ Reð�w/) is the quaternionic inner product.
The purpose of calculating r2w is to obtain a relationship between
1
2 i�hr2w and u � $w,

i
�h
2
r2w ¼ �u � $wþ i

�h
2
w j$wj2 þ 1

2
hs;DsiC

� �
� 1
2
ðs� DsÞ

� �
:

(B6)

We then substitute Eq. (B6) into Eq. (26) and get

@w

@t
þ u � $w ¼ �iw

�h
4
ðs� DsÞ þ ~p

� �
; (B7)

where ~p is the modified pressure,

~p ¼ p
�h
� �h

2
j$wj2 � �h

4
hs;Dsi: (B8)

Finally, we apply ��wi$ to the left- and right-hand sides of Eq.
(B7) and then take the real part to get Eq. (23). The calculation pro-
cess for the left-hand side of the equation is

Re ��wi$
@w

@t
þ u � $w

� �� �

¼ 1
�h
@u
@t

þ Re
@ �w

@t
i$w� �wi$ u � $wð Þ

� �

¼ 1
�h

@u
@t

þ $
juj2
2

� �
þ Re

@ �w

@t
i$w� �wiu � $$wð Þ

� �

¼ 1
�h

@u
@t

þ $
juj2
2

� �

þ Re
@ �w

@t
i$w� u � $ �wi$w

	 

þ u � $�w

	 

i $wð Þ

� �

¼ 1
�h

@u
@t

þ u � $uþ $juj2
2

� �

þ Re
@ �w

@t
þ u � $�w

� �
i$w

� �

¼ 1
�h

@u
@t

þ u � $uþ $juj2
2

� �

� Re ~p � �h
4
s� Ds

� �
�w$w

� �

¼ 1
�h

@u
@t

þ u � $uþ $juj2
2

� �
� �h

4
Re Dsð Þs�w$w
� �

¼ 1
�h

@u
@t

þ u � $uþ $juj2
2

� �
þ �h

8
h$s;Dsi: (B9)

The calculation process for the right-hand side of the equation is
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Re ��wi$ �iw
�h
4
s� Dsþ ~p

� �� �� �

¼ �Re �w$ w
�h
4
s� Dsþ ~p

� �� �� �

¼ �Re �wð$wÞ �h
4
s� Dsþ ~p

� �� �
� $~p

¼ � �h
4
Re �wð$wÞsDs� �� $~p

¼ �h
4
Re ð$�wÞwsDs� �� $~p

¼ �h
8
Re ð$sÞDs½ � � $~p

¼ � �h
8
h$s;Dsi � $~p: (B10)

We combine Eq. (B9) with Eq. (B10) to get

@u
@t

þ u � $u ¼ ��h$ ~p þ $juj2
2

� �
� �h2

4
h$s;Dsi; (B11)

which is Eq. (23).

APPENDIX C: COMPUTATION OF VORTICITY
FLUXES

For the ISF governed by Eq. (23), the vorticity fluxes are
conserved during the evolutionary process. We select the plane
section at y ¼ p, and the vorticity fluxes of the closed knotted
vortex tube passing through this section can be divided into four
parts, as shown in Fig. 11. We calculate the sum of the absolute
vorticity fluxes on the section and then divide this by four. The
result is the vorticity fluxes of the knotted tube. The conservation
of vorticity fluxes in the evolutionary process is proved as
follows.75

Theorem 1. Let S(t) be a virtual material surface advected by a
virtual velocity

v ¼ uþ �h2

4
h$s;Dsi � x

jxj2 : (C1)

The circulation is then a virtual Lagrangian scalar, since

DvC
Dvt

¼ 0; (C2)

where Dv=Dvt ¼ @=@t þ v � $ is the virtual material derivative.
Proof. By acting on both sides of Eq. (B11) with the operator

$�, we obtain

@x

@t
¼ $� ðv� xÞ: (C3)

Therefore, the change in vorticity flux with time through S(t) can be
calculated as

DvC
Dvt

¼ d
dt

ð
SðtÞ

x � dS

¼
ð
SðtÞ

Dvx

Dvt
þ x � $ � v�rvð Þ

� �
� dS

¼
ð
SðtÞ

@x

@t
� $� ðv� xÞ

� �
� dS

¼ 0: (C4)
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