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Abstract
This article presents a two-way coupling approach to simulate bouncing droplet
phenomena by incorporating the lubricated thin aerodynamic gap between
fluid volumes. At the heart of our framework lies a cut-cell representation
of the thin air film between colliding liquid fluid volumes. The air pressures
within the thin film, modeled using a reduced fluid model based on the lubri-
cation theory, are coupled with the volumetric liquid pressures by the gradient
across the liquid–air interfaces and solved in a monolithic two-way coupling
system. Our method can accurately solve liquid–liquid interaction with air
films without adaptive grid refinements, enabling accurate simulation of many
novel surface-tension-driven phenomena such as droplet collisions, bouncing
droplets, and promenading pairs.
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1 INTRODUCTION

When fluid volumes get small, that is, on the length scales between O(0.1) 𝜇m—O(1)mm, their interactions exhibit
complicated flow dynamics and geometric forms governed by many small-scale physical processes. For instance, a fluid
volume can collide and bounce,1 walk,2,3 wrap,4–6 glide,7 support and drive,8 or form nonmanifold geometric struc-
tures.9,10 These flow processes are remarkably different from their macroscopic counterparts, behaving like deformable
solids (e.g., a fluid surface can hold heavy objects, and fluid volumes can collide and bounce) rather than shear irresistible
liquids. A dominant force underpinning these small-scale flow processes is surface tension. The recent advances in com-
putational physics11–16 and computer graphics6,17–20 in devising algorithms to accurately simulate surface tension with
complex geometries and multiphysics interactions have enabled numerical explorations of an ensemble of new interfacial
and solid-fluid coupling phenomena that were impractical to simulate with traditional methods.

However, among these new surface-tension phenomena being tackled, devising first-principle approaches to model
the intricate interactions between droplets and fluid volumes remains challenging due to the difficulties of handling
the multiphase and multiscale coupling. When a small droplet falls onto a pond surface, it could rebound, decrease its
size, and sit on the deforming surface for seconds long, before its eventual merge into the water bulk (e.g., see Refer-
ences 21–23). The physical mechanics underpinning this seemingly discrete phenomenon lie in the evolution of a thin
air gap between the droplet and the liquid surface. When two fluid volumes approach each other, a thin layer of the
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surrounding air is trapped in the narrow gap between them.21,24 As the air gap’s thickness decreases, the air viscosity
dominates its dynamics according to the lubrication theory, which leads to the resistance of air drainage and prevents
the liquids from merging together. As the air leaks out, the gap narrows to a point where it can no longer maintain the
separation of the liquids, eventually leading to their coalescence.21 Intuitively speaking, the dynamics of the thin gap acts
as an air cushion transmitting pressure forces between the liquid volumes and coupling their interfacial dynamics with-
out exhibiting any liquid–liquid contact. During the process, the air gap’s thickness scale is O(0.1) 𝜇m, in comparison to
O(1)mm as the droplet size.

This multiphase and multiscale coupling problem underpins many droplets splashing, adhesion, and walking droplet
phenomena,22 which has drawn extensive attention from experimental and theoretical physicists. In the literature, the
rebound behavior of droplets in the binary collision was first reported by Rayleigh25 and analyzed by Pan et al.1 and Zhang
and Law.26 Similar rebound phenomena have also been observed when droplets bounced on the soap films,27 rigid sur-
faces28,29 and liquid surfaces.24 Among these works Couder et al.,21 reported the role of air film in the process of droplet
bouncing. Further studies show that droplets can interact with liquid in different ways, including walking,2,3,30 diffraction
and interference,31 tunneling across the submerged barrier,32 and orbiting.33,34 Bush35 summarized these quantum-style
behaviors and connected the hydrodynamics system with the quantum theories. The quantum analogs also emerge
in multidroplet scenarios, including orbiting pairs,36,37 promenading pairs,38 stable spin lattices,39 droplet rings.40 The
experimental studies and theoretical models for quantum analogs are reviewed and summarized in Reference 41.

From the perspective of the numerical simulation, thin fluids, such as sheets,42,43 splashes,44,45 bubbles,46–48

films,20,49,50 as well as air gaps discussed above, all exhibit codimensional geometric features that are challenging to resolve
with a traditional volumetric discretization (e.g., a Cartesian grid or a simplicial mesh). To capture these thin fluid features,
researchers invented a broad range of hybrid geometric representations, such as particles,20,51,52 surface meshes,10,43,47,53

implicit interfaces,46,54,55 and hybrid particle-grid representation.19,42 By tracking the geometry changes and assigning
degrees of freedom to the thin structures, these representations enable us to discretize and effectively solve the physical
forces acting on codimensional structures. Moreover, these codimensional representations allow researchers to simplify
the physical models further. For instance, in the context of modeling bouncing droplets, recent works13,56–59 employ a
reduced lubrication film model to resolve the thin air flow within the gaps by considering the tangential viscosity as the
primary force.

Cut-cell methods (e.g., References 60–62) provide an effective alternative for modeling thin features while keeping the
uniform grid structure. In contrast to adaptive mesh refinement (AMR) methods,12,63,64 which recursively refine the grid
to achieve sufficient resolution on thin features, cut-cell methods divide an interface cell with fine geometries and evaluate
the flow details with additional degrees of freedom. Its main advantage over dedicated codimensional modeling is that it
offers a straightforward and intuitive way to integrate the thin features with their surrounding volumetric domains. These
methods are commonly employed in simulating the thin gap flow,65,66 multiphase fluids,67 fluid-rigid interaction,60,61,68

and fluid-deformable interactions.69 For example, Chen et al.70 improves cut-cell methods by incorporating a pressure
reposition strategy, resulting in second-order accuracy and discretization orthogonality. When it comes to thin-gap flow,
Qiu et al.65 solved a two-way coupling system between thin gaps and solids, where additional pressure degrees of freedom
were placed on the solid surface. Another category of research strives to capture the subcell flow details by integrating
the irregular cell into the Eulerian framework, including Voronoi cells,71,72 tetrahedral cells73 and tilted cells.74

We propose a novel two-way coupling approach to simulate the bouncing droplet phenomena based on first prin-
ciples. Our algorithm couples fluid volumes, thin air gaps, and interfacial forces in a monolithic manner to model
the aerodynamics-driven fluid contact processes by producing simulations that match real-world experiments in
three-dimensional settings. Our key idea is to discretize the air gap as a set of irregular grid cells and devise a reduced fluid
model to characterize their coupling with the liquid volumes. Our method creates a new set of irregular grid cells specified
with varying thicknesses that can be embedded in a Cartesian grid to characterize the thin air film. This novel geometric
representation captures the air–liquid interactions within a thin gap with an arbitrary thickness without employing any
adaptivity (which is impractical in this setting due to the drastically different length scales). On top of this novel geometric
discretization, we further build a monolithic system to solve the coupling problem.

We demonstrate the effectiveness of our approach by simulating different bouncing droplet phenomena involving
thin intervening air films. These phenomena include binary collision, bouncing droplets, promenading pairs, and droplet
pinch-off. We also validate the accuracy of our model by comparing the simulation results with experimental videos in
different collision and contact settings. Our method enables three-dimensional simulations of bouncing droplets that
match real-world physics, and it produces visually authentic animations to demonstrate these complicated processes. We
summarize the main contributions of our work as:

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7592 by Z
hejiang U

niversity, W
iley O

nline L
ibrary on [18/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



WANG et al. 3 of 26

• A discrete representation to model aerodynamic thin films with varying thicknesses as the single-layered irregular cells.
• A cut-cell grid method to couple multiphase fluids with contrasting length scales.
• A monolithic coupling algorithm to solve the lubricated air film and incompressible flow in a single linear solve.
• A unified simulation framework to simulate bouncing droplets with physical accuracy.

This article is organized as follows. In Section 2, we present the physical model of the system. Section 3 introduces the
geometrical discretization and defines the differential operators on the cut-cell liquid regions and the single-layer irregular
air cells. We then proceed to build a coupling system to resolve the pressure across the volumetric liquid regions and the
lubricated air film in Section 4. In Section 5, we outline our temporal evolution scheme and introduce the remaining
steps of the algorithm. The results of the numerical validation and the simulation are presented in Section 6. Finally, we
conclude our work and discuss the limitations and future directions in Section 7.

2 PHYSICAL MODEL

2.1 Domain definition

As shown in Figure 1, we useΩ = Ω1 ∪ Ω2 ∪ Ω3 ∪ Γ to denote the entire fluid domain. In particular, we useΩ1 to represent
liquid volumes (including both bulks and droplets), Ω2 to represent the thin air film, and Ω3 to represent ambient air. The
liquid domainΩ1 can be further divided into liquid volumes (Ω1,j, j ∈ N∗) (e.g., liquid bath and bouncing drops) according
to their topological connectivities. The thin air film Ω2 is defined as the region where the distance between two liquid
volumes is less than a predefined thickness threshold hmax. Mathematically, this film can be featured asΩ2 = {x ∈ Ω ∶ x ∉
Ω1 and d(x,Ω1,j) + d(x,Ω1,k) ≤ hmax with j ≠ k}, where d(x,Ω1,j) = minx̃∈Ω1,j(|x − x̃|) returns the distance between x and
Ω1,j. In addition to Ω, we use Γ to denote the fluid interface across different domains. We let Γ = Γ12 ∪ Γ23 ∪ Γ13, where Γ12

F I G U R E 1 Illustration of fluid domains and interfaces. The entire computational domain is divided into three domains. Ω1 is liquid,
Ω2 is the thin air film, and Ω3 is ambient air. Interfaces are denoted using the corresponding subscripts (Γ12, Γ13, Γ23). We show examples of
the domain evolution at t = {0, t1, t2}. Left top: When t = 0, a droplet Ω1,1 is released above the liquid bath Ω1,2. The distance between two
liquid volumes is more significant than a predefined film thickness threshold hmax. Left bottom: When t = t1, the liquid volumes approach
each other. The thin air film Ω2 is identified where the distance between two liquids is less than hmax. Right: When t = t2, the liquid bath
deforms due to the impact of the droplet. In the air film, we define local coordinates on Γ12 ∩ 𝜕Ω1,2 as a tangential basis vector et and a
normal basis vector en. The local coordinates are parameterized by 𝜉t and 𝜉n. The local thickness h of the air film at x ∈ Γ12 ∩ 𝜕Ω1,j is
approximated as its distance to Ω1,k. ut↑,ut↓ specify the local tangential velocities on the upper and down sides of air film (both denoted as
Γ12). Similarly, un↑,un↓ specify the local normal velocities on the two sides.
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is the interface between Ω1 and Ω2, Γ13 = 𝜕Ω1 ⧵ Γ12 is the interface between liquid and ambient air and Γ23 = 𝜕Ω2 ⧵ Γ12
is the interface between thin film and ambient air.

2.2 Volumetric, multiphase fluid model

We model the motion of fluid volumes by solving the multiphase, incompressible Navier–Stokes equations

⎧⎪⎨⎪⎩
𝜕u
𝜕t

+ u ⋅ 𝜵u = −𝜵pi
𝜌i

+ 𝜇i
𝜌i
∇2u + g,

𝜵 ⋅ u = 0,
x ∈ Ωi, i = 1, 2, 3, (1)

with the interface jump conditions

⎧⎪⎨⎪⎩
[p1] = 𝛾𝜅, x ∈ Γ12 ∪ Γ13,

[p2] = 0, x ∈ Γ23,

[u] = 0, x ∈ Γ12 ∪ Γ13 ∪ Γ23,

(2)

where u is the velocity, g is the gravitational acceleration, pi is the pressure in Ωi, 𝛾 is the surface tension coefficient, and
𝜅 is the local mean curvature. [⋅] denotes the jump condition across an interface.

Solving Equation (1) on a Cartesian grid directly is impractical, due to the vanishingly small domain thickness of the
air gap. Therefore, we exercise simplification in each domain. For the liquid domain Ω1, we drop the viscosity term. For
the ambient air domainΩ3, we assume the air pressure is constant, that is, p3 = patm, where patm is the default atmospheric
pressure. The model simplification of thin-film flow is nontrivial, which we will discuss next.

2.3 Thin-film fluid model

We model the trapped air between fluid volumes as a lubricated thin film of air volume. We will first describe its geometry
model and then present the dynamics equations.

2.3.1 Thin-film geometry

Due to the extremely thin nature of the trapped air between fluid volumes, conventional grid methods struggle to track it
efficiently. Recent advancements13,58 have proposed simplifying the air film model to single-layered Degrees of Freedom
(DoF) with varying thicknesses. These DoFs are defined and solved only within a limited range, where the thickness
remains below a certain threshold. Such simplification enables efficient tracking and accurate reproduction of head-on
collisions of droplets. Our approach takes this idea further by integrating it with a standard Eulerian grid, facilitating
more intricate interactions between liquids and the trapped air film. We model trapped air on a thin film with spatially
varying thickness between the fluid volumes. Next, we discuss its geometry model and parameterization.

For geometry description, we model a thin layer of air as a codimension-1, open surface with varying thickness embed-
ded in codimension-0 space. The two sides of the surface are the two interfaces between different fluid volumes in Ω1 and
the air film Ω2. The open boundary of the surface (as a codimension-2 rim) is the interface between the air film Ω2 and
the ambient Ω3.

For surface parameterization, we define a local coordinate system at each point of the surface by establishing a set of
orthonormal basis vectors. For example, as shown in Figure 1, in two-dimensional space, we define et and en according to
the local geometry as the tangential and normal basis vectors. A point in the air film can be described using its coordinates
𝜉t and 𝜉n. These definitions can be naturally extended to three-dimensional cases. For each local point within the film,
we define its local thickness h as the sum of distances to two adjacent liquid volumes.
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2.3.2 Thin-film dynamics

Next, we will derive the governing equations for thin-film airflow based on Equation (1). We will first present the
differential form and then the integral form.

Differential form
According to References 12,13,58, in scenarios where droplets exhibit bouncing behaviors, the pressure increase within
the film is relatively small due to the low collision velocity. Therefore, the incompressible assumption within the air film
is deemed acceptable for reproducing the desired phenomena. We adopt this simplification, following previous works, by
modeling the air film as an incompressible fluid.

Following References 58 and 75, we reduce Equation (1) by modeling the normal and tangent gradients of air pressure
in the thin film as

⎧⎪⎨⎪⎩
𝜕p2
𝜕𝜉t

= 𝜇2
𝜕2ut
𝜕𝜉2

n
,

𝜕p2
𝜕𝜉n

= 0,
x ∈ Ω2, (3)

with {
[p2] = −𝛾𝜅, x ∈ Γ12,

[p2] = 0, x ∈ Γ23,
(4)

where 𝜉n and 𝜉t denote the local unit normal and tangent directions, respectively, and un,ut are normal and tangent
components of the air velocity, respectively. The intuition behind Equation (3) is as follows: As the thickness of the air
film decreases, especially when the thickness is much smaller than the characteristic tangent length, the viscosity drag
becomes the dominant force.75,76

Integral form
Based on Equation (3), we can further derive the integral form for thin-film flow. Given a small control volume V in the
air film, we define its tangent volume boundary as 𝜕Vt and its normal volume boundary as 𝜕Vn ⊆ Γ12. The pressure within
V is governed by the incompressibility constraints in Equation (1), where the sum of the integrated flux through the
boundary is zero. By substituting the lubrication model into the tangent flux on 𝜕Vt and considering the pressure-gradient
force on the normal boundary 𝜕Vn, the air-film pressure takes the form

∫𝜕Vt

h2

12𝜇
𝜕p2

𝜕𝜉t
ds + Δt ∫𝜕Vn

1
𝜌2

𝜕p2

𝜕𝜉n
ds = ∫𝜕Vt

ut↑ + ut↓

2
ds + ∫𝜕Vn

unds, (5)

with the jump conditions on the interfaces {
[p2] = −𝛾𝜅, x ∈ Γ12,

[p2] = 0, x ∈ Γ23,
(6)

where Δt is the time step, ut↑, ut↓ represent the local tangent boundary velocity evaluated at Γ12 ∩ 𝜕Ω1,k and Γ12 ∩ 𝜕Ω1,j
respectively (see Figure 1), and un is the local normal boundary velocity. We refer readers to a detailed derivation in A.

3 DISCRETIZATION

3.1 Subcell discretization

We discretize the liquid domain Ω1 as multiple separate liquid volumes on a Cartesian grid with cut cells. Every liquid
volume is tracked in a regular background grid by a separate node-based level set. The cut-cell mesh is rebuilt from the
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F I G U R E 2 Discretization of liquids and the air film. The liquid domain Ω1 (blue) is divided into several separate liquid volumes on the
Cartesian grid enhanced by cut-cells, with level set 𝜙, pressure p1 and velocity u sampled on nodes, cells, and faces. In the gap between liquid
volumes, the air film Ω2 (green) is represented by single-layered irregular cells and the cut-cell meshes to solve pressure p2.

level set to represent its interface. The interface grid cells are cut into subcells. The pressure samples are repositioned
carefully to maintain the orthogonality of the gradient to the cut-cell interface, thus achieving subgrid accuracy. Based
on the cut-cell meshes, the air film Ω2 is constructed as single-layered irregular cells sandwiched between cut-cell-based
liquid volumes, as shown in Figure 2.

3.1.1 Liquid discretization

We divide the liquid domain Ω1 into separate regions by running a flood-fill algorithm. As shown in Figure 3, we track
each liquid region by creating its own level set function on a regular background grid. We define the interface 𝜕Ω1 by con-
structing a cut-cell isocontour mesh using the marching cubes algorithm.77 Specifically, to find the intersection between
an interface and a grid edge, we check the sign change of the level set on the grid edge. These intersections, called cut
vertices, can be expressed mathematically as x = (1 − 𝜃)xl + 𝜃xm with 𝜃 = 𝜙(xl)∕(𝜙(xl) − 𝜙(xm)), where xl and xm are the
two endpoints of a grid edge. The cut vertices are then connected into meshes (segment mesh in 2D or triangle mesh in
3D). The faces of this cut-cell mesh are referred to as “cut faces” to distinguish them from the regular “grid faces.”

As illustrated in Figure 3, the velocity field for each liquid volume is split into orthogonal components and stored in
grid faces. The interface velocities are sampled at the center of the cut faces and interpolated from the grid faces. Under
an inviscid assumption, only the normal component of the interface velocity is preserved.

We follow Reference 70 to reposition the pressure samples along the iso-surface within the cut-cell for improved
subgrid accuracy and discretization orthogonality. By assuming equivalent pressure values along the iso-surface, a single
pressure variable for a cut cell can be mapped to multiple pressure samples equidistant to the interface. For each cut-cell,
an appropriate iso-distance value is determined, such that the iso-surface intersects with the perpendicular lines of all
its grid faces and cut faces through their centroids. These newly generated samples are positioned at these intersection
points, guaranteeing that pressure gradients are always orthogonal to cell faces and co-located with velocity samples at
those face centroids. The central difference stencils are then constructed based on this discretization. We recommend
readers refer to Reference 70 for further details.

In brief, in our discretization, each liquid cell is surrounded by a cut-cell mesh where velocity is defined, encompassing
both cut faces and grid faces. The pressure samples are duplicated at multiple locations to facilitate the calculation of
differential operators on each face.
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F I G U R E 3 Discretization of the liquid level set, velocity, and pressure. We split the liquid domain into multiple liquid regions
(Ω1,1,Ω1,2, … ). Left and right: Each region has its own node-based level set 𝜙 (black dots) and face-based velocity field u (solid arrows). The
interfaces 𝜕Ω1 are discretized into the cut-cell mesh (blue segments) by performing the marching cubes algorithm on level sets. The velocity
fields are sampled on grid faces (solid arrows) and extrapolated (dashed arrows). Middle: When coupling fluid regions with the air film
(green), the normal velocities on the cut faces (dashed arrows) are interpolated from the grid faces. The pressure samples (blue dots) in the
cut-cell are repositioned on the same iso-distance (blue dotted lines) parallel to the interface, following.70

F I G U R E 4 Discretization of the irregular air film cells in 2D (left) and 3D (right). The top and bottom of the air cell are defined by the
cut-cell mesh (green faces). The lateral cell boundaries are discretized as half faces at the rim (gray faces). un↑ and un↓ are the normal velocity
of interfaces at the center of cut faces interpolated from the liquid volumes. ut↑ and ut↓ are the tangential velocity interfaces evaluated at the
cut vertices in 2D or the midpoints of cut edges in 3D.

3.1.2 Air-film discretization

The air film Ω2 is discretized as a set of single-layered irregular cells seamlessly embedded in the thin gap between liquid
volumes. These air cells are reconstructed every time step based on the cut-cell mesh of the surrounding liquid volumes.
After advection, we construct the cut-cell mesh for liquid volumes and organize the nearby cut faces from different regions
into groups. One air cell is then assigned on each cut face group with the cut-meshes serving as its top and bottom surface,
as shown in Figure 4. The air pressure degrees of freedom are placed at the center of the cut face groups. More details on
the construction of the air film can be found in Section 5.3.

The air-film thickness varies within a single air cell. For an air cell located between liquid volumes Ω1,j and Ω1,k, given
a vertex x on the cut face in 𝜕Ω1,j ∩ Γ12, the local thickness h is defined as 𝜙k(x) where 𝜙k is the levelset function of the
other liquid volume Ω1,k. The thickness of a cut face is defined as the average of its vertices.
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The cut-cell meshes, obtained from the interfaces of liquid volumes, also serve as the top and bottom boundaries of
air cells. The normal velocities on the top and bottom surfaces un↑, un↓ are sampled at the center of these cut faces and
interpolated from the liquid velocity. However, it is challenging to explicitly define the lateral surface of the air cell using
meshes, especially in three-dimensional cases. Instead, we represent the lateral surface with half faces, which are the
faces expanded from the rim of the top and bottom meshes along the local normal direction.

As shown in Figure 4 (left), for two-dimensional cases, we define half faces on the rim vertices. These half-faces are
half-height lateral faces connected to the top or bottom of air cells and are normal to the local tangent. The area of the
half face is approximated as h↑∕2 or h↓∕2, where h↑, h↓ are the air film thickness evaluated at the top and bottom cut
vertices. The tangent velocities on the half faces are interpolated from the liquid volumes at the cut vertices on the rim
of the air cell, denoted by ut↑ and ut↓ respectively. The tangent flux between two air cells is approximated at both top and
bottom boundaries as ut↑h↑∕2 + ut↓h↓∕2. Note that this boundary tangent flux form is only utilized as the first term on
the right-hand side in Equation (5).

In a three-dimensional case, the half faces are defined on the rim edges of the top and bottom meshes, as in Figure 4
(right). The lateral tangent velocities ut↑, ut↓ are interpolated at the midpoint of the rim edges, and the lateral area of the
half face is lh∕2 where l is the length of the rim edge. Unlike the two-dimensional case, there is no one-to-one mapping
between the half faces on the top and bottom boundaries in the three-dimensional case. To obtain the tangent flux between
two air cells, we iterate over the common rim edges between the two cells and sum up the flux of the half faces on these
rim edges. With the lateral interfaces of air cells defined on the half faces based on the top and bottom boundaries, our
method effectively handles the nonmanifold film geometry, as shown in Figures 5 (middle) and 14.

To summarize, the inter-liquid gap is discretized into single-layered air cells, with cut-cell meshes of liquid volumes
serving as their top and bottom boundaries. The lateral boundaries of the air cells are defined as half faces along the
periphery of the top and bottom boundaries, where the tangential velocity within the film is defined.

F I G U R E 5 Time evolution of 2D scenarios. Top: binary droplet collision. Middle: trinary droplet collision. Bottom: bouncing droplet.
Liquid volumes (blue) are visualized and air films (green) are depicted in the latter two examples.
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WANG et al. 9 of 26

3.2 Discrete differential operators

Next, we will build discrete differential operators for the liquid volumes, air film, and their interfaces. We provide a
comprehensive explanation of gradient operators as an example and visualize them in Figure 6. The divergence and
Laplacian operators can be derived in a similar manner. Additionally, we summarize these density-weighted gradient
operators within Table 1.

3.2.1 Gradient operator in liquid

In a liquid domain, the gradient is defined as∇p = (p1,l − p1,m)∕dlm between two liquid cell l, m, with the pressure samples
p1,l, p1,m on the iso-surfaces of cells and dlm = |xl − xm|, as depicted in Figure 6 (left). On the ambient air interface Γ13,
we modify the gradient equation by placing the interfacial pressure sample p1,m at the center of the cut face and setting it
equal to the boundary condition patm. We use S1Ĝ1p1 to represent the matrix form of the pressure gradient acceleration
∇p∕𝜌 in the liquid domain. p1 stands for the liquid pressure vector. Ĝ1 is a difference matrix with elements 1 and −1,
denoting the pressure difference across the grid faces and cut faces of Γ13. S1 is a diagonal matrix with elements 1∕(𝜌1dlm),
which can be regarded as the inverse of the area density in the control volume of the face between p1,l and p1,m.

3.2.2 Gradient operator in air film

The tangent pressure gradient in the air film is defined on the half faces between adjacent air pressure degrees of freedom.
As shown in Figure 6 (right), we sample the pressure p2,l, p2,m at the center of air cells xl, xm and discretize the gradient

F I G U R E 6 Discretization of three types of gradient operators in 2D. The three types of discretized gradient operators—liquid–liquid,
air–liquid, and air–air—are depicted on the grid. The involved liquid and air cells are colored in blue and green, separately. The pressure
DoFs are represented by large dots, while the distances between DoFs utilized in gradient operators are visualized as arrowed lines.

T A B L E 1 Discretized gradient operators on between different cells.

Cell type l Cell type m 𝛁p∕𝝆

Liquid Liquid p1,l−p1,l

𝜌1|xl−xm|
Liquid Ambient air p1,l−patm

𝜌1|xl−x𝜃 |
Air Air p2,l−p2,m

𝜌2|xl−xm|
Air Ambient air p2,l−patm

𝜌2|(xl−xr )⋅et |
Liquid Air p1,l−p2,m

(𝜌1dl+𝜌2hlm)∕2
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10 of 26 WANG et al.

∇p =
(

p2,l − p2,m
)
∕(|xl − xm|) on the half faces. On the ambient air interface Γ23, we place the pressure sample of the

ambient air p2,m on the half face. And the distance between two samples is defined as |(xl − xr) ⋅ et|, where xr is the position
of the rim (rim vertex in 2D, midpoint of rim edge in 3D), et is the tangent unit vector at xr parallel to ut↑ or ut↓. We use
p2 to denote the air film pressure vector and Ĝ2 to denote the tangent pressure difference operator on the half faces.

3.2.3 Gradient operator on air–liquid interface

Across the interface Γ12 between the liquid volumes and the air film, the acceleration caused by pressure gradient ∇p∕𝜌
is continuous. Disregarding the jump condition, the acceleration on a cut face between the liquid sample p1,l and the air
film sample p2,m is discretized as ∇p∕𝜌 = (p1,l − p2,m)∕(𝜌1dl + 𝜌2hlm∕2), where dl is the distance from the liquid pressure
sample to the cut face, hlm∕2 is the half thickness evaluated at the cut face, as shown in Figure 6 (middle). The acceleration
acrossΓ12 is given as SΓĜΓ(pT

1 ,p
T
2 )

T , where SΓ is a diagonal matrix with elements 1∕(𝜌1dl + 𝜌2hlm∕2) describing the inverse
of face density in the control volume of the cut faces. ĜΓ = (ĜΓ,1, ĜΓ,2) is the difference matrix across the interface. Each
row of ĜΓ,1 picks out the adjacent liquid pressure sample of the cut face and assigns 1. In contrast, each row in ĜΓ,2 assigns
−1 for the adjacent air film sample. Thus, ĜΓ(pT

1 ,p
T
2 )

T returns a vector where the entries are pressure differences between
the liquid and the air film on the cut faces of Γ12.

4 COUPLING SYSTEM

Building upon the subcell discretization and its discrete differential operators, we propose a two-way coupling method
for solving the pressure monolithically across both the liquid volumes and the air gap. This method couples the inviscid
liquids and the lubricated air film through their cut-cell interface, which enforces the continuous velocity constraint
naturally. We will now introduce the pressure projection equation for liquids and air film and derive their coupling system.

4.1 Liquid domain

The pressure projection equation for the liquid is discretized on the liquid cells, which gives

Δt
∑
g

Ag

𝜌1
∇p1 + Δt

∑
n

An

𝜌1

𝜕p1

𝜕𝜉n
=
∑
g

Agug +
∑
n

Anun, (7)

where g is the set of the grid faces, and the cut faces on the ambient air boundary Γ13, n is the set of the cut faces on
the boundary Γ12. ug is the velocity sampled on the faces g. un is the normal velocity on the center of the cut faces n. Ag
and An denote the area of the corresponding faces.

Using the differential operator in Section 3.2, we rewrite Equation (7) in a matrix form as

ΔtĜT
1 A1S1Ĝ1p1 + ΔtĜT

Γ,1AΓSΓ(ĜΓ,1p1 + ĜΓ,2p2)

= ĜT
1 A1u1 + ĜT

Γ,1AΓuΓ,
(8)

where Ĝ1 is the pressure difference operator on the grid faces inΩ1 and the cut faces onΓ13. ĜΓ,1p1 + ĜΓ,2p2 is the pressure
difference across the liquid–air-film interface Γ12. A1 and AΓ are the diagonal area matrices for the liquid faces in Ω1 ∪ Γ13
and the cut faces on Γ12, respectively. u1 is the velocity vector for the liquid faces in Ω1 ∪ Γ13 and uΓ is the velocity vector
for the cut faces on Γ12.

4.2 Air film

Discretizing Equation (5) on a irregular air cell gives

∑
t

h2
t At

12𝜇2

𝜕p2

𝜕𝜉t
+ Δt

∑
n

An

𝜌2

𝜕p2

𝜕𝜉n
=
∑
t

Atut +
∑
n

Anun, (9)
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WANG et al. 11 of 26

where t is the set of the lateral half faces of the air cell, n is the set of the cut faces on its normal boundary in Γ12, ut is
the boundary tangent velocity on the half faces which represents both ut↑ and ut↓, un is the normal velocity on the center
of the cut faces, ht is the thickness evaluated at the rim of the half face, At and An denote the area of the half faces and
the cut faces.

The matrix form of Equation (9) for the air film becomes

1
12𝜇2

ĜT
2 V2Ĝ2p2 + ΔtĜT

Γ,2AΓSΓ(ĜΓ,1p1 + ĜΓ,2p2)

= ĜT
2 A2u2 + ĜT

Γ,2AΓuΓ,

(10)

where Ĝ2 is the tangent difference operator mapping the pressure difference onto the half faces, V2 is a diagonal matrix
denoting

(
h2A

)
∕d with the thickness h, half face area A and sample distance d evaluated on the half faces between two

air cells. u2 is the tangent velocity vector containing ut↑ and ut↓ on the half faces.

4.3 Fully-coupled system

Combining Equation (8) and Equation (10) yields the fully-coupled system.

⎡⎢⎢⎣
ΔtĜT

1 A1S1Ĝ1 + ΔtĜT
Γ,1AΓSΓĜΓ,1 ΔtĜT

Γ,1AΓSΓĜΓ,2

ΔtĜT
Γ,2AΓSΓĜΓ,1 ΔtĜT

Γ,2AΓSΓĜΓ,2 +
1

12𝜇2
ĜT

2 V2Ĝ2

⎤⎥⎥⎦ ⋅
[

p1

p2

]

=

[
ĜT

1 A1u1 + ĜT
Γ,1AΓuΓ

ĜT
2 A2u2 + ĜT

Γ,2AΓuΓ

]
.

(11)

This system is symmetric and positive definite and is amenable to high-performance algebraic multigrid solvers. To
ensure the volume conservation of each fluid region during the simulation, we adopt the divergence control method
proposed in Reference 78.

5 TIME INTEGRATION

We summarize our temporal evolution scheme in Algorithm 1. At the beginning of each frame, the node-based level sets
and the velocity fields are advected using the MacCormack method (Section 5.1). After the advection, the gap geometry is
fixed (Section 5.2). Then, we generate the cut cells of the liquid volumes using the marching cube method and discretize
the air film into single-layered irregular cells (Section 5.3). Body forces, including gravity, are applied explicitly, and the
surface tension is solved implicitly on fluid regions (Section 5.4). Finally, our method couples the pressure degrees of
freedom in the liquids and the air film through their interfaces and solves the two-way coupling system (Section 4).

5.1 Advection

As discussed in Reference 13, the inertia of the air film can be considered negligible in simulation when the gaseous
kinetic energy is much smaller compared to the Laplace pressure, which holds for all small-scale scenarios in our
article. Therefore, in this step, we only advect the liquid volumes. We perform the MacCormack method79 to update the

Algorithm 1. Temporal evolution for a single timestep

1: Advect liquid level sets and velocity fields (Section 5.1)
2: Fix gap geometry to avoid penetration (Section 5.2)
3: Update cell geometry for liquid and air (Section 5.3)
4: Apply body forces
5: Solve implicit surface tension (Section 5.4)
6: Solve the two-way coupling system (Section 4)
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12 of 26 WANG et al.

node-based level set and velocity field of each liquid volume according to its extrapolated velocity field. Given that the
level set values, especially those distant from the interfaces, deviate from the expected values after the advection, we
reinitialize level sets by employing the fast-marching algorithm.

5.2 Fixing gap geometry

Due to the significant difference in scale of the system, even trivial numerical errors from advection and interpolation can
lead to negative air film thickness. We address the issue by performing Jacobi-style iterations of local correction on the
cut vertices with negative thickness. Given the cut vertex x on the grid edge e and the liquid interface 𝜕Ω1,j, if it is found
to be inside another liquid volume Ω1,k (𝜙k(x) < 0), the local correction update the level set value on both nodes of e by
𝜙j+ = (|𝜙k(x)| + h𝜖)∕2. h𝜖 is the minimal thickness threshold determined empirically.

5.3 Updating cell geometry

In each time step, we update the cell geometry on both liquid volumes and the air film. For the liquid volumes, we
regenerate the cut-cell mesh and reposition the pressure samples on the iso-surface. Based on the interface mesh of liquids,
irregular air cells are constructed.

5.3.1 Cut cells in liquid volumes

For each liquid volume, we perform the marching cube algorithm on its node-based level set to obtain its cut-cell mesh. We
then update the pressure samples on the cut cells, following a method proposed in Reference 70, to achieve second-order
accuracy and maintain discretization orthogonality on the cut cells.

5.3.2 Irregular cells in the air film

The process of the air cell construction is illustrated in Figure 7. Given a pair of liquid volumes {Ω1,j,Ω1,k}, the air film is
defined as the region where h < hmax. We employ graph theory to establish a many-to-many mapping between cut faces
from two liquid volumes, and then group the neighboring cut faces to construct single-layered air cells.

We first define an iso-contour surface at 𝜙j − 𝜙k = 0, which is also the ridge of min(𝜙j, 𝜙k). A set of ridge vertices 
are sampled at the intersections of this ridge surface and the grid edges. Then, an auxiliary graph is initialized with these
ridge vertices  and the cut faces j ∪ k as the graph nodes. Note that only the cut faces with local thickness h < hmax
are involved. We search for the closest cut faces for each ridge vertex and establish edges between each ridge vertex
and its closest cut faces in j and k, as well as between each cut face and its closest ridge vertex. For each connected
subgraph, we group the cut faces within the same subgraph and construct irregular air cells with these cut faces serving
as their boundary meshes on air-fluid interfaces. The lateral cell boundary of a newly generated air cell is discretized
as the half faces orthogonal to the rims of the boundary meshes as described in Section 3.1. The normal and tangential
velocities on its boundary are interpolated from the velocity fields of corresponding liquid volumes and projected onto
the corresponding directions. To determine the center of the air cell, we compute the average position of its vertices and
project it onto the ridge surface.

5.4 Semi-implicit surface tension

Instead of treating surface tension as the interface pressure jump in pressure projection, we solve the semi-implicit surface
tension46 on a narrow band around the interface weighted by a Dirac function for each fluid region independently. The
faces within 𝜙(x) < Δx𝜎 are included in the equation:(

1 − 1
𝜌
𝜎Δt2∇2

)
u∗ = u + 1

𝜌
𝛿(𝜙)𝜎𝜅n⃗Δt, (12)
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WANG et al. 13 of 26

F I G U R E 7 Illustration of irregular cell construction for the air film. Left: The surface mesh of two liquid volumes Ωj,Ωk (blue surface
with wireframes) is visualized. First, the ridge vertices (black dots) are sampled at the intersections of grid edges and the ridge surface (gray
surface) where 𝜙j − 𝜙k = 0. Middle: Next, We construct a graph with cut faces and ridge vertices as the graph vertices and initialize its edges
based on the closest neighbor search. We then divide the cut faces into multiple groups (colored mesh) based on the connectivity of the
graph. Right: Finally, the air cells (green cells) are constructed based on the groups of cut faces. For clarity purposes, only a subset of air cells
is visualized in this figure. The top and bottom boundaries of air cells are defined by the cut faces (green faces). The lateral cell boundaries are
defined by the half faces (gray faces) positioned along the edge of the cut faces.

where the Dirac function is

𝛿(𝜙) =
1 + cos 𝜋𝜙

Δx𝛿

2Δx𝛿
, if 𝜙 ∈ [−Δx𝜎,Δx𝜎], (13)

with the band width Δx𝛿 = 3Δx. The zero-velocity Dirichlet boundary condition is enforced. We then discretize
Equation (12) as a symmetric linear system with u∗ as unknown values, and employ the algebraic multigrid solvers for
its solution.

6 RESULTS

6.1 Numerical validations in 2D

To validate our coupled pressure projection, we set up a set of two-dimensional numerical tests.

6.1.1 Air film pressure transmission

In this two-dimensional test, a thin air film is trapped between two liquid volumes in a solid piston with zero gravity, as
illustrated in Figure 8 (left). A constant pressure is applied to the upper boundary of the liquid, resulting in a high pressure
inside the piston. Due to the incompressibility, the analytical solution should be a constant pressure field throughout the
entire domain. The simulation is conducted in a 1 mm × 1 mm domain divided into a 64 × 64 grid. The air film locates at y
= 0.5 mm with the thickness h = 1 × 10−3 mm. The density of the liquid and the air are 𝜌1 = 1000 kg∕m3, 𝜌2 = 1 kg∕m3. A
Dirichlet pressure boundary condition of pext = 1000 Pa is applied to the upper domain boundary and Neumann pressure
boundary conditions are applied to all solid boundaries. The resulting pressure on vertical lines x = 1.0, 0.84, 0.67, 0.5 mm
are identical to the constant external pressure, which is consistent with the analytical solution.

6.1.2 Air film pressure transmission with the open boundary

We further assess the pressure transmission through the planar air film with its left and right boundaries connected to
the ambient air, similar to the liquid–air-film system in real-world scenes. The configurations are identical to the test in
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14 of 26 WANG et al.

F I G U R E 8 Numerical validation of pressure transmission across the air film. A series of scenes are set up, where an air film is confined
in a piston filled with liquids, and a constant pressure pext = 1000 kPa is applied on the upper boundary. The illustration of the scene and the
plot of the pressure loss pext − p are shown. Left: A planar air film trapped between two liquid regions in a piston. The pressure losses
evaluated at x = 1.0, 0.84, 0.67, 0.5 mm show that the external pressure is transmitted throughout the whole domain and results in an
identical pressure field. Middle: The same air film is trapped with its left and right boundaries connected to the ambient air. The same
pressure samples are evaluated, indicating that the thin film is capable of transmitting the majority of pressure even close to the ambient air
boundary. Right: An annular air film is trapped in the liquid, with a constant pressure applied on the upper boundary. The radial pressure
loss distribution and the pressure loss along the annular film are plotted, which match the boundary pressure condition.

Section 6.1.1, with the exception of the zero pressure boundary condition being applied at the left and right boundaries
of the air film.

We analyze the pressure loss distribution along four vertical lines at x = 0.0, 0.17, 0.34, 0.5 mm. The results in Figure 8
(middle) show that although the pressure slightly decreases as it moves down, about 99.99% of the pressure is suc-
cessfully transmitted to the lower liquid volume. Therefore, when two liquids collide, the thin air film acts like an
air cushion even if it is connected to the ambient air, and is able to transmit the pressure between them to avoid
coalescence.

We also examine the effect of air film thickness on pressure transmission. Figure 9 shows the pressure loss
sampled along the vertical line at x = 0.5 mm for various thicknesses h = 10−2, 3 × 10−2, 10−3, 10−4 mm. The results
support the intuitive assumption that as the air film gets thinner, the pressure transmission loss across the air film
decreases.

6.1.3 Annular air film pressure transmission

In Figure 8 (right), we demonstrate the ability of our solver to handle a curved air film. An annular air film is trapped in
the liquids, with the same boundary conditions in Section 6.1.1. The film is centered in the domain with the thickness
h = 1 × 10−3 mm and radius 0.25 mm. the constant pressure is obtained throughout the liquid volume and the air film, in
agreement with the analytic solution.
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WANG et al. 15 of 26

F I G U R E 9 The pressure transmission in Figure 8 (middle) with different air film thickness h. The pressure loss along the vertical lines
at x = 0.5 mm is plotted.

F I G U R E 10 Convergence validation of pressure in the air film with varying thickness. We investigate the convergence behavior of our
method in a scene with a 2D thin air film of varying thickness. Left: The scene overview depicts varying pressure applied to the top boundary,
with a thin air film (green) of thickness ranging from hc to hb trapped between two liquid volumes (blue). Middle: The resulting pressure
distribution within the air film at different resolutions. Right: The convergence rate is depicted, showing a decrease in average pressure error
as resolution increases.

6.1.4 Air film pressure at different resolutions

To further validate the convergence behavior of our method, we examine a scenario involving a thin film trapped between
two liquid volumes, as illustrated in Figure 10 (left). An external pressure is applied at the upper boundary, following the
function pext(x) = 100 × (0.52 − (x − 0.5)2) kPa. We define the film thickness as h(x) = hc + R −

√
R2 − (x − 0.5)2, mim-

icking the thin film trapped between a spherical droplet and a planar liquid tank. Specifically, we set hc = 10−5 mm and
R = 12500 mm, ensuring that the thickness ranges within [hc, hb](hb = 2 × 10−5 mm). We solve this static scene at various
resolutions and plot the resulting pressure distribution within the air film in Figure 10 (middle), showing convergence
towards a consistent curve. Additionally, we compute the average absolute error by comparing the air film pressure with
that at resolution 1024 × 1024, as depicted in Figure 10 (right), demonstrating convergence as the resolution increases.

6.1.5 Droplet impact with different film height thresholds

We simulate a two-dimensional droplet impacting a liquid bath to evaluate the effects of hmax, which is used as a numerical
threshold to distinguish the air film from the ambient air. The simulation is initialized in a 1 mm × 1 mm domain with
Δx = 1∕64 mm, where the droplet is placed at (0.5, 0.5) with radius r = 0.15 mm and the bath is initialized with the depth
hB = 0.3 mm. The surface tension of the liquid is 𝜎 = 1.66 mN/m and its density is 𝜌1 = 1000 kg/m3. The air density is
𝜌2 = 1 kg/m3 and its viscosity is 𝜇2 = 18.6 uPas The simulation is run with the gravity g = −9.8 m/s2 and the time step
Δt = 5 × 10−4 s.
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16 of 26 WANG et al.

F I G U R E 11 A 2D droplet falls on the liquid bath with different air film height thresholds hmax = 3Δx, 5Δx, 7Δx

Figure 11 shows the results with hmax = 3Δx, 5Δx and 7Δx, which validates that the thickness threshold won’t affect
the overall motion of the simulation. We also found that a small threshold hmax = Δx would lead to instability due to the
potential incorrect geometry in air film initialization, while a too-large threshold would introduce additional overhead
on thick air film where the resulting pressure has a negligible effect on the liquids. Therefore, we use hmax = 5Δx for the
remaining simulations in this work.

6.1.6 Binary collision at different resolutions

We also conduct simulations of two-dimensional binary droplet collisions to assess convergence under varying resolu-
tions. The scene is set within a domain of 1 × 1 mm, where two droplets with a radius of r = 0.15 mm are initialized at
(0.5 ± 0.27, 0.5) with opposite initial velocities of 60 mm/s.

Figure 12 depicts the results obtained with resolutions 64 × 64, 128 × 128, 192 × 192, 256 × 256, 320 × 320. The abso-
lute error is shown in Figure 12 (bottom left). The y-axis radii of the droplets (r0, r1) are evaluated as half the width of
the droplets. As the resolution increases, the simulations tend to converge toward consistent results, with a decreasing
convergence rate.

6.1.7 Binary droplet collision, trinary droplet collision, bouncing droplet in 2D

In Figure 5 (top), we simulate the two-dimensional binary collision by emitting two identical spherical droplets with
opposite initial velocities. During the head-on collision, the air film exerts resistance to droplet coalescence, resulting in
the droplets bouncing apart. We also simulate the trinary collision in Figure 5 (middle), which demonstrates the ability
of our method to handle nonmanifold joints in thin films.

We further simulate the two-dimensional bouncing droplet. The bath oscillates vertically with the period 0.02 s and
the peak acceleration 9.8 m/s2. As shown in Figure 5 (bottom), the droplet is able to bounce over the bath periodically
and stably for a long time, which indicates the stability of our algorithm.

6.2 Binary droplet collision

We follow the experimental study1 to set up the experiments of head-on binary tetradecane droplet collisions. Two tetrade-
cane droplets are initialized in 1 atm ambient air, with the density 𝜌1 = 762 kg/m3 and the surface tension coefficient
𝜎 = 26.56 mN/m. The density of the air film trapped in the gap is 𝜌2 = 1 kg/m3, and the viscosity is 𝜇2 = 18.6 uPas. The
simulation is conducted with the time step Δt = 5 × 10−6 s on a 256 × 128 × 128 background grid with Δx = 1∕128 mm.

In Case I, the droplets with the radius R = 0.1706 mm are placed along the x-axis with the distance between the droplet
centers D0 = 2.5R and emitted in opposite directions with an initial velocity V0 = 0.243 m/s. In Case II, the collision
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F I G U R E 12 2D binary droplet collision at various resolutions. Top: Simulation results with resolutions of 64 × 64, 128 × 128,
192 × 192, 256 × 256, 320 × 320. Bottom left: Absolute error of two droplet radii (r0, r1) in y-axis and their centroid distance (d) evaluated at
t = 0.0255 s. Bottom middle and right: Zoomed-in results of the upper part of the left droplet at t = 0.0150, 0.0255 s.

occurs between two droplets with the radius R = 0.1676 mm and the initial velocity V0 = 0.496 m/s, resulting in larger
deformation. The Weber number is We= 2.27 for Case I and is We= 9.33 for Case II.

The time series of the droplets are visualized in Figure 13 with our simulation results and the photographs obtained
from the experiments in Reference 1. Specifically, four representative frames are compared, including the initial contact,
maximum deformation, rebound, and detachment. Our results, which use the same configurations, agree well with the
experimental results in terms of contact time and droplet deformation.

6.3 Trinary droplet collision

We further conduct the experiment where three tetradecane droplets collide and rebound. We emit three tetradecane
droplets with radius R = 0.1706 mm in 1 atm ambient air, with the density 𝜌1 = 762 kg/m3, the surface tension coefficient
𝜎 = 26.56 mN/m and the initial velocity V0 = 0.5 m/s. The density of the air film is 𝜌2 = 1 kg/m3, and the viscosity is
𝜇2 = 18.6 uPas. We discretize the domain on a 128 × 128 × 128 background grid with Δx = 1∕128 mm and conduct the
simulation with the time step Δt = 5 × 10−6 s.

The simulation result is depicted in Figure 14, showcasing the collision of three identical droplets followed by their
rebound. Note that the air film exhibits a nonmanifold joint, demonstrating the ability of our method to handle complex
nonmanifold geometry.

6.4 Bouncing droplet on a vibrating bath

We reproduce the bouncing droplet reported in Reference 2 where a silicon oil droplet is released on an oscillating silicon
oil bath. The container is vibrating vertically with the acceleration aB = 𝛾 sin(2𝜋ft), where f is the frequency, and 𝛾 is the
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18 of 26 WANG et al.

F I G U R E 13 Time evolution of the binary droplet collision for Case I and II. Top and bottom: Representative frames of the rendered
images from our simulation and the experimental snapshots from Reference 1. Middle: The evolution of the x-axis positions of two droplets.
The regions filled by the light color are the x-axis bounding box of two droplets. Solid lines denote the x-axis center position of two droplets.

F I G U R E 14 Time evolution of the trinary droplet collision. Three droplets collide, form a nonmanifold gap between them and
subsequently rebound.

peak acceleration. As discussed in Reference 2, different periodic bouncing modes (m,n) of the droplets are observed. In
a (m,n) bouncing mode,2,27 the droplet bounces steadily with the period equal to m∕n times of the bath vibration period.
Intuitively, it means the droplet contacts the bath n times within m bath oscillating periods.

In our simulation, we release a silicon oil droplet with the undeformed radius R0 = 0.39 mm, with surface ten-
sion 𝜎 = 20.6 mN/m and density 𝜌1 = 949 kg/m3. The bath is shaken vertically with f = 50 Hz and 𝛾 = 35.28 m/s2. The
nondimensional bath acceleration is Γ = 𝛾∕g = 3.6. The simulation is conducted in a 5 × 5 × 5 mm domain divided into
2563 grid cells, with the time step Δt = 2 × 10−4 s.
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In Figure 15, the vertical sections through the droplet center are rendered and joined together by frame order. The
droplet trajectory and the sinusoidal motion of the liquid surface are plotted on the spatiotemporal image. Our simula-
tion reproduces the (2, 1) bouncing mode reported in Reference 2, where the droplet bounces once every two vibration
periods of the bath. Whenever the droplet touches the bath, the bath is always in its upward phase of the period and
propels the droplet back.

The pressure distribution in the air film on a cross-section across the droplet center is visualized in Figure 16. At the
beginning of the impact, a narrow pressure peak in the air film arises due to the large relative velocity between the two
liquids. As the droplet deforms, the pressure is distributed over a larger area of the air film. As its upward velocity is
restored, the air film pressure declines until the droplet separates from the bath.

6.5 Promenading pairs of droplets

As reported in the previous work,38 when two identical droplets bounce on an oscillating liquid bath, they exhibit a
behavior known as the promenading mode. In this mode, the droplets interact with each other through the wave field
and vibrate laterally along the line across their centers. In our simulation, the silicon oil with the density 𝜌1 = 949 kg/m3

and the surface tension 𝜎 = 20.6 mN/m is used for both droplets and the liquid bath. The radius of the undeformed
droplets is R = 0.8 mm, and the bath is vibrated vertically with f = 80 Hz, Γ = 0.45 and 𝛾 = 4.41 m/s2. The initial distance
between the droplet centers is D0 = 4 mm in Case I and D0 = 2.4 mm in Case II. To reduce the accumulated error caused
by long-term simulation, we simulate the two phases (approaching and leaving each other) of the promenading mode sep-
arately over several vibration periods. The simulation domain is discretized on a 256 × 170 × 256 with Δx = 15∕256 mm.
The time step is Δt = 1 × 10−4 s.

The simulation results in Figure 17 show that our method is capable of capturing the interaction between two droplets
through the wave field and reproducing two phases of the promenading modes. In Case I, with a small initial droplet
distance, two droplets bounce and move away from each other, while in Case II, with a larger distance, they bounce and
move toward each other. The trajectories of two droplets and their distances are plotted aside.

In this scene, we demonstrate that our algorithm is compatible with multiple liquid volumes. By using separate
field discretization for each liquid volume, minimal modifications are required when applying the algorithm to multiple
liquid volumes. In particular, the air film construction and the region topological change step (splitting and merging) are
executed sequentially for all possible liquid volume pairs in cases with multiple liquids.

F I G U R E 15 Time evolution of a droplet bouncing on a vibrating bath in (2, 1) mode. Top: Rendered images of four representative
frames. Bottom: Temporal evolution of the scene. The solid line denotes the movement of the droplet center, and the dashed line denotes the
bath movement. The background image is generated by stitching the successive simulation frames, where a cropped vertical section
represents each frame through the droplet center.
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20 of 26 WANG et al.

F I G U R E 16 The air film pressure distribution of the bouncing droplet. Top left: The section view of the domain across the droplet
center at t = 0.0282 s. The background grid is colored with the checkerboard pattern to visualize the cells. Top right: A zoom-in section view
of the pressure distribution in the air film. The coordinate system is stretched vertically to enhance visualization. Bottom: The pressure
distribution in the air film during the first impact. The pressures are sampled on the same section across the droplet center.

F I G U R E 17 The two droplets bounce on the vibrating bath and form the promenading pairs. Left: Rendered result for Case I, where
two droplets bounce and move away from each other. Middle: Rendered result for Case II, where the droplets move towards each other. Right
top: The droplet positions as a function of time t. The colored stripes indicate the x-axis bounding box of droplets. The solid lines represent
the trajectories of the droplet centers. Right bottom: The droplet distances as a function of time t.

6.6 Merging and pinching

As shown in Figure 18, we reproduce the droplet pinch-off with a large droplet (R = 10 mm) released on a still bath,
similar to Reference 23. When the large droplet touches the liquid bath, it merges with the liquid surface. Following the
merging, a thin liquid column emerges, breaks off, and eventually pinches off a small droplet due to the surface tension,
which is able to sit on the bath for several seconds.
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F I G U R E 18 Droplet merging and pinching. A large droplet falls and merges with the bath, which causes a thin liquid column to form
due to the surface tension. The column eventually breaks off and pinches off a smaller droplet bouncing on the bath.

T A B L E 2 Physical parameters in the scenes.

Scene |g|(m/s2) 𝝆1(kg/m3) 𝝈1(mN/m) 𝝆2(kg/m3) 𝝁2(𝝁Pas)

Binary collision (I & II) − 762 26.56 1 18.6

Trinary collision − 762 26.56 1 18.6

Bouncing droplet 9.8 949 20.6 1 18.6

Promenading pairs (I & II) 9.8 949 20.6 1 18.6

Merging and pinching 9.8 949 1333.3 1 18.6

We simulate the scene with a 256 × 128 × 256 grid with Δx = 120∕256 mm and Δt = 2 × 10−4 s. The density of the
liquid is 𝜌1 = 949 kg/m3 and the surface tension is 𝜎 = 1333.3 mN/m.

When the large droplet touches the liquid bath, the negative thickness correction is turned off to mimic the droplet
merging caused by the Van der Waals force. After the droplet merges with the bath, we switch to the semi-implicit surface
tension to avoid the numerical viscosity at the thin liquid neck. The weight wexp = 0.3 is used for the explicit surface
tension part and wimp = 0.7 for the implicit part. After the pinch-off, we switch back to the implicit surface tension solver.

The topological changes of the liquid volumes, including splitting and merging, are resolved automatically on the
node-based level sets. To detect splitting, we execute the flood fill algorithm on each liquid volume level set. When multiple
connected components are found, the fluid region is split and these connected components are converted into new fluid
regions, each with its own level set and velocity field sampled from the original liquid volume. Merging of two regions
is identified when their level sets overlap. It is detected when a cut vertex on the grid edge of the region Ω1,j is inside of
another region Ω1,k, as indicated by 𝜙k(x) < 0. The regions are then replaced by a newly merged region, whose level set
is constructed as 𝜙 = min(𝜙j, 𝜙k). The velocity field of the merged region is copied from the original regions. Specifically,
the velocity on the overlapping face is assigned as the average velocity of two original regions.

6.7 Performance

The physical parameters of the scenes are summarized in Table 2. All the simulations are performed on a PC with Intel®

Xeon® E5-2620 v4 2.10GHz CPU. We use the AMGPCG solver in AMGCL80 to solve the linear system in the implicit
surface tension and pressure projection steps. The simulation configurations and timings are listed in Table 3. All the
three-dimensional simulations are rendered using Houdini.
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T A B L E 3 Simulation configuration and timings.

Scene Grid resolution 𝚫x(mm) 𝚫t(s) Iter/frame Time/frame (s) #DoFs(103)

Binary collision I 256 × 128 × 128 1∕128 5 × 10−6 1.18 14.37 96.63

Binary collision II 256 × 128 × 128 1∕128 5 × 10−6 1.18 14.20 91.85

Trinary collision 128 × 128 × 128 1∕64 5 × 10−6 1.00 5.60 19.97

Bouncing droplet 256 × 256 × 256 5∕256 2 × 10−4 3.12 128.02 6750.88

Promenading pairs I 256 × 170 × 256 15∕256 1 × 10−4 1.16 56.96 5446.76

Promenading pairs II 256 × 170 × 256 15∕256 1 × 10−4 1.14 53.28 5448.75

Merging and pinching 256 × 128 × 256 15∕32 2 × 10−4 1.19 27.23 2854.92

7 SUMMARY

This article proposed a novel computational approach for simulating the bouncing droplet phenomena, with a particular
focus on capturing and solving the air film that plays an essential role in fluid collision and coalescing. Based on the
cut-cell fluids tracked by separate level sets, we discretize the entrained air film as a single layer of irregular cells that
are tightly embedded within the gap formed by adjacent cut-cell fluid interfaces. This allows for efficient handling of the
complex film geometry without the need for tedious grid refinement. Building upon this discretization, we model the air
film as a thin lubricated layer and couple it with the inviscid incompressible liquid in a monolithic manner. Our method
reproduces a wide range of phenomena, including binary collision, bouncing droplets, promenading pairs, and droplet
pinch-off, demonstrating its ability to capture many critical dynamical features by accurately resolving the lubricated air
flow with liquids.

We identify several limitations and future work directions based on our current approach. First, our system does not
handle viscosity in the fluid domain. One immediate next step is to add viscosity to the liquid model, which has been
proven important in driving droplet walking behaviors.2 In particular, we plan to focus on the interfacial viscosity cou-
pling between liquid volumes and the air film. Second, the physical accuracy of our fluid–fluid coalescence model can
be improved. For example, introducing the Van der Waals force into our continuous flow model is an interesting future
direction, allowing the solver to predict the bouncing and coalescence behaviors based on multiscale physical principles.
Third, due to the computing resolution and boundary conditions, our solver currently cannot model the interfacial wave
dynamics accurately, which limits its capability to handle complex drop-wave interactions such as the pilot drop dynam-
ics.35 In particular, devising a direct numerical solver to reproduce the full-scale dynamics of a walking droplet and further
explore its quantum-mechanics connections still remains challenging (and alluring). Last, our current model can only
handle thin films between fluid volumes. Extending the proposed cut-cell algorithm to facilitate simulations with more
complicated physics, for example, to capture the air gap between droplets and elastic thin sheets, filaments, and fluffy
surfaces, will open up new opportunities for this model in accommodating physical simulations in a wider scope.
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APPENDIX . LUBRICATION MODEL IN THE AIR FILM

As two liquid regions approach each other, the thickness of inter-liquid film between them decreases. The dimension of
the film in the normal direction becomes much smaller than its dimension in the tangential direction, and the viscosity
drag becomes the dominant force. Through order analysis, we model the air flow in the gap using the lubrication theory.75

In the lubricated film, the normal and tangent gradient of the air pressure are modeled as

⎧⎪⎨⎪⎩
𝜕p2
𝜕𝜉t

= 𝜇2
𝜕2ut
𝜕𝜉2

n
,

𝜕p2
𝜕𝜉n

= 0,
x ∈ Ω2, (A1)

with {
[p2] = −𝛾𝜅, x ∈ Γ12,

[p2] = 0, x ∈ Γ23,
(A2)

where 𝜉n and 𝜉t denote the local unit normal and tangent directions, respectively, un,ut are normal and tangent
components of the air velocity, respectively.

To derive the equation that updates the tangential velocity by the pressure gradient, we integrate the first equation in
Equation (A1) with respect to the normal direction 𝜉n:

𝜉n
𝜕p
𝜕𝜉t

= 𝜇

(
𝜕ut

𝜕𝜉n
− 𝜕ut

𝜕𝜉n
|𝜉n=0

)
. (A3)
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Then we integrate it again on the intervals [0, 𝜉n] and [0, h] (h is the thickness of the air film):

𝜉2
n

2
𝜕p
𝜕𝜉t

= 𝜇

(
ut(𝜉n) − ut(0) − 𝜉n

𝜕ut

𝜕𝜉n
|𝜉n=0

)
h2

2
𝜕p
𝜕𝜉t

= 𝜇

(
ut(h) − ut(0) − h 𝜕ut

𝜕𝜉n
|𝜉n=0

)
.

(A4)

By combining these two equations to eliminate 𝜕ut
𝜕𝜉n

|𝜉n=0 and applying the boundary conditions ut(h) = ut↑,ut(0) = ut↓, the
tangential velocity of the air film is given as:

ut(𝜉n) = −𝜉n
h − 𝜉n

2𝜇
𝜕p
𝜕𝜉t

+ h − 𝜉n

h
ut↓ +

𝜉n

h
ut↑. (A5)

The average tangent velocity of the film can be obtained by integrating the tangent velocity from 𝜉n = 0 to 𝜉n = h

hu∗
t = ∫

h

0
ut(𝜉n)d𝜉n

= ∫
h

0

(
−𝜉n

h − 𝜉n

2𝜇
𝜕p
𝜕𝜉t

+ h − 𝜉n

h
ut↓ +

𝜉n

h
ut↑

)
d𝜉n

=
(
−
𝜉2

nh
4𝜇

𝜕p
𝜕𝜉t

+
𝜉3

n

6𝜇
𝜕p
𝜕x

+ 𝜉nut↓ +
𝜉2

n

h
(ut↑ − ut↓)

)|h0
= h3

12𝜇
𝜕p
𝜕𝜉t

+ h
2
(ut↑ + ut↓).

(A6)

Thus the average tangent velocity of the air film is

u∗
t = − h2

12𝜇
𝜕p
𝜕𝜉t

+ 1
2

ut↑ +
1
2

ut↓. (A7)

In the normal direction, the velocity on the interface Γ12 is updated by the pressure gradient across the liquid and
the air.

u∗
n = un − Δt

𝜌2

𝜕p2

𝜕𝜉n
, x ∈ Γ12. (A8)

Given a volume V in the air film with its tangent boundary 𝜕Vt and normal boundary 𝜕Vs ⊆ Γ12, the incompressibility is
achieved by summing up the integrated flow through the boundary:

∫𝜕Vt

u∗
t ds + ∫𝜕Vn

u∗
nds = 0. (A9)

Substituting Equation (A7) and (A8) into it yields the reduced model for the air film:

∫𝜕Vt

h2

12𝜇
𝜕p2

𝜕𝜉t
ds + Δt ∫𝜕Vn

1
𝜌2

𝜕p2

𝜕𝜉n
ds = ∫𝜕Vt

ut↑ + ut↓

2
ds + ∫𝜕Vn

unds, (A10)

with {
[p2] = −𝛾𝜅, x ∈ Γ12,

[p2] = 0, x ∈ Γ23.
(A11)
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