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ABSTRACT

Dynamic mode decomposition (DMD) is a widely used method to extract dynamic information from sequential flow data, aiding our
comprehension of fluid dynamics and transport processes. While DMD can unveil internal system laws and predict unsteady flow
phenomena, the connection between DMD modes and the nonlinear hydrodynamic behavior of solid bodies remains unexplored. This study
investigated the internal relationship between DMD modes and their impact on hydrodynamic forces. We employed a penalty-immersed
boundary method to simulate the behavior of a flapping flexible plate in a uniform incoming flow, generating extensive datasets of vorticity
fields. By applying DMD to these datasets, we identified key modes governing the flow dynamics, including the shear layer, symmetric vortex
street, and antisymmetric vortex street. Furthermore, we utilized the impulse theory to analyze the force characteristics of the plate based on
the corresponding DMD modes. The net force is determined by the combined contributions of the impulse force and the vortex force. Our
findings reveal that the net horizontal force is primarily influenced by the first two modes. Specifically, mode 1, characterized by a dimension-
less frequency of f � ¼ 0, contributes to thrust, whereas mode 2, with f � ¼ 1, contributes to drag. This physical investigation holds relevance
for fluid–structure systems involving the interaction dynamics of flexible structures with unsteady wake vortex systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0169989

I. INTRODUCTION

The advancement of computational fluid dynamics and flow
measurement techniques has revolutionized the characterization of
flow, achieving unprecedented levels of precision. As a result, there is a
growing focus on extracting modal information from vast amounts of
flow field data and modeling complex dynamic behaviors in fluid
dynamics research. Dynamic mode decomposition (DMD), a pioneer-
ing method that couples spatial and temporal dynamics, has gained
rapid recognition and widespread adoption.1 The DMD method ana-
lyzes the dominant characteristics of unsteady flows, and these domi-
nant modes can be effectively utilized to construct reduced-order
models for accurately predicting the nonlinear dynamics of complex
systems.

The DMD method’s ability to decouple nonlinear flow behaviors
with different frequency components has made it highly valuable in
analyzing a wide range of flow problems. For example, it has been suc-
cessfully applied in studying pitching foils,2 flow control,3–5 biological
self-propulsion,6 vortex-induced vibration,7 and turbulent boundary
layer interaction.8 Nonetheless, there is a paucity of research concern-
ing hydro/aerodynamic force mechanisms,9,10 particularly in the con-
text of unsteady fluid–structure interaction systems.

While we often use the conventional surface stress integration
formula to predict forces acting on solid objects, existing theories fall
short of specifying which modes among the flow structures generated
by object motion are the primary contributors to the overall force. On
the other hand, employing DMD for the analysis of force mechanisms
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offers distinct advantages, particularly in elucidating the influence of
individual modes on a body. By identifying the pivotal modes that
influence a body’s forces, it can facilitate precise control of dynamic
systems. Furthermore, our goal is to demonstrate the efficacy of DMD
as a predictive tool by delving into the relationship between DMD
modes and force generation.

In addition, some classical vorticity dynamic theories can be
incorporated into the study of forces. Burgers11 introduced the classical
impulse theory, which was later developed independently by Wu12 and
Lighthill.13 This theory establishes a connection between forces and
the rate of vorticity moment change in viscous flow. In a similar way,
Chang14 developed a diagnostic force theory aimed at separating
potential forces, such as added mass and inertial forces, and determin-
ing the contributions of individual fluid elements to these forces.
Building on the classical impulse theory, Noca et al.15 extended the
analysis domain to arbitrary finite domain. Wu et al.16 derived more
unconventional force expressions by employing derivative-moment
transformations. These transformations enable the substitution of the
original integrand with the spatial derivative moments, which can be
represented by other terms in the differential motion equations, when
necessary. This approach explicitly reveals the impact of various local
dynamic processes and structures on the integrated performance.
Kang et al.17 further proposed a minimum-domain impulse theory to
relate the whole force on the body to a limited flowfield region without
the need for surface integrals along the outer domain boundary. Li and
Wu18 made progress in this aspect by developing vortex force maps
that connect the force generated by a vortex to corresponding position
and velocity. Consequently, these theories have found successful appli-
cation in analyzing local dynamic processes in scenarios such as bluff-
body flows and insect flight.19,20

Building upon prior research on the relationship between vortical
structures and dynamics, this paper intends to conduct a force analysis
of the vorticity field by incorporating DMD. Specifically, we use vortic-
ity as the observed quantity for DMD decomposition, which has the
following two main advantages: (1) Compared with velocity field and
pressure field, the perturbation of vorticity field is exponentially
decayed with distance. For the external-flow problem, it is only distrib-
uted near the object and in a limited area of the wake region. (2) Using
impulse theory, the force on a body can be expressed as an integral
function of vorticity and position, the contribution to the force of the
body can realize the decomposition of both the region17,19,20 and the
function (like the DMD decomposition), thus making it possible to
predict the contribution of each DMD mode to the force by vorticity
alone.

This paper focuses on the study of fish swimming, a flow charac-
terized by a series of complex fluid-structure interactions and distinct
characteristic frequencies. Numerous studies have revealed the impact
of these frequencies on propulsion performance.21–24 Furthermore,
some studies have delved deeper into exploring the relationship
between the flow field surrounding the fish and the forces exerted on
the fish’s body.25,26 Inspired by previous research, we employ a flexible
flapping plate as a model and combine the DMD method with the
impulse theory to study the flow phenomena of fish swimming with
the impulse theory.

We used a penalty-immersed boundary method for simulation to
obtain the full-order vorticity field information of the flexible flapping
plate problem, and utilized DMD method to extract the key modes

information of vorticity field evolution, from which we identified three
types of wake vortex structures for all modes. We used impulse theory
to evaluate the key modes that affect the force of the plate and explored
the underlying physical mechanisms. The purpose of this study is to
achieve an improved understanding of some of the fundamental
mechanisms relevant to the DMD. The physical investigation is gen-
eral for any fluid-structure system involving the interaction dynamics
of flexible structures with an unsteady wake–vortex system.

The paper is organized as follows: In Sec. II, we give an overview
of the problem set-up, including the governing equations for fluid
dynamics and plate motion, details about the numerical solver for the
coupled fluid-structure system along with its validation, and an intro-
duction to DMD. The discussion regarding the forces associated with
local vortical structures can be found in Sec. III. In Sec. IV, the DMD
analysis for vortical flow over a plate and the force contributions from
the decomposed modes are discussed. Finally, concluding remarks are
provided in Sec. V.

II. COMPUTATIONAL MODEL

In this section, we begin by introducing the physical model and
the numerical simulation method, followed by an introduction to the
DMDmethod for analyzing flow field data.

A. Physical problem andmathematical formulation

A schematic of a flexible flapping plate heaving in a uniform flow
with incoming velocity U1 is shown in Fig. 1. The heaving motion of
the leading edge is described as

xLðtÞ ¼ 0; yLðtÞ ¼ A cosð2pfctÞ; (1)

where A ¼ 0:5L is the flapping amplitude, L is the length of the plate,
fc is the flap frequency, t is the time, and (xL, yL) is the position of the
leading edge of the plate. The x-coordinate of the leading edge of the
plate is zero. The trailing edge of the plate is free.

The motion of the fluid is governed by the incompressible viscous
Navier–Stokes (NS) equations,

@u
@t

þ u � ru ¼ � 1
q
rpþ l

q
r2uþ f ; (2)

r � u ¼ 0: (3)

Here, u ¼ ðu; vÞ represents the fluid velocity, with u and v denoting
the x-component and y-component of velocity, respectively. q is the
fluid density, p is the pressure, l is the dynamic viscosity, and f is the
body force term.

FIG. 1. Schematic diagram of a flexible plate heaving in a uniform flow with incom-
ing velocity U1. The plate is represented by a beam model, which is forced to flap-
ping sinusoidally. (xL, yL) is the position of the leading edge of the plate.
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The motion and deformation of the plate are described in a
Lagrangian coordinate system. The governing structure equation is

qsh
@2X
@t2

¼ FS þ @

@s
Eh 1�

���� @X@s
����
�1

 !
@X
@s

� @

@s
EI

@2X
@s2

� �" #
;

(4)

where qsh is the structural linear mass density of the plate, s is the
Lagrangian coordinate along the plate, X is the position of the plate,
and FS is the Lagrangian force exerted on the plate by surrounding
fluid. Eh and EI are the structural stretching rigidity and bending rigid-
ity, respectively. At the leading edge of the plate, we have X ¼ ð0;
yLÞ; @X=@s ¼ ex;�Ehð1� j@x=@sj�1Þ@X=@sþ EI @

3X
@s3 ¼ 0. At the

trailing edge, the boundary conditions are j@X=@sj�1 ¼ 1; @2X=
@s2 ¼ 0; @3X=@s3 ¼ 0, which mean that there are no tension force,
bending moment and shearing force acting at the free end.

The reference quantities density q, velocity Uref ð¼ LfcÞ and the
length L are chosen to normalize the above equations. The key non-
dimensional parameters are the Reynolds number Re ¼ qUrefL=l, the
bending coefficient K ¼ EI=qU2

refL
3, the tension coefficient S ¼ Eh=

qU2
refL, and the mass ratio of the plate to the fluidM ¼ qsh=qL.

B. Numerical method for fluid-plate interaction

We now summarize our numerical method to simulate the cou-
pled fluid–plate interaction using the incompressible NS equations and
the flexible plate dynamics. The NS equations (2) and (3) are solved by
the lattice Boltzmann method (LBM).27 The discrete lattice Boltzmann
equation with the Bhatnagar–Gross–Krook (BGK) collision model is

fiðx þ eiDt; t þ DtÞ � fiðx; tÞ ¼ � 1
ŝ

fiðx; tÞ � f eqi ðx; tÞ� �þ DtF i;

(5)

where fi represents the distribution function for particles with velocity
ei at position x and time t. Dt is the time step. ŝ is the non-
dimensional relaxation time related to the fluid viscosity,
� ¼ c2s ðŝ � 0:5ÞDt. f eqi is the equilibrium distribution function, which
is defined as

f eqi ¼ wiq 1þ ei � u
c2s

þ ðei � uÞ2
2c4s

� u2

2c2s

" #
; (6)

and the force termF i is

F i ¼ 1� 1
2ŝ

� �
wi

ei � u
c2s

þ ei � u
c4s

ei
� �

� f ; (7)

where cs ¼ c=
ffiffiffi
3

p
is the speed of sound. c ¼ Dx=Dt is the lattice speed,

where Dx is the grid spacing of the mesh. f is the body force in Eq. (2).
wi is the weighting factor for the D2Q9 model,28 where wi ¼ 4=9 for
i¼ 0, wi ¼ 1=9 for i ¼ 1; 2; 3; 4; wi ¼ 1=36 for 5; 6; 7; 8. The D2Q9
model for 2D problem is

ei ¼ c
0 1 0 �1 0 1 �1 �1 1
0 0 1 0 �1 1 1 �1 �1

� �
: (8)

The plate dynamic equation (4) is solved by the nonlinear finite
element method (FEM) with the large-displacement deformation

problem handled by co-rotational scheme.29 The solvers LBM and
FEM are coupled by the immersed boundary method.30 The
Lagrangian force FS can be calculated by the penalty scheme as

FS ¼ a
ðt
0
U f ðs; t0Þ � U sðs; t0Þ
� �

dt0 þ b U f ðs; tÞ � U sðs; tÞ
� �

; (9)

where a and b are negative penalty parameters. t0 is the time integral
variable. U s is the Lagrangian velocity of the material point of the plate.
U f is the fluid velocity at the position X, which can be obtained by the
following interpolation:

U f ðs; tÞ ¼
ð
uðx; tÞdðx � Xðs; tÞÞdx: (10)

Then the body force term in Eq. (2) is

f ðx; tÞ ¼ �
ð
FSðs; tÞdðx � Xðs; tÞÞds: (11)

The above numerical method has been widely utilized to solve
fluid-structure interaction problems, such as flow over a flexible
plate24,31 or an inverted flexible plate,32 self-propulsion or collective
locomotion of flexible plates.33–36 The validation of the numerical
method has been conducted in our previous works.25,35,37

In our study, a typical case of a flapping flexible plate in a uniform
incoming flow is simulated. The key non-dimensional parameters are
Re¼ 64, S¼ 1000, K¼ 8,M¼ 0.2, and q¼ 1.

Regarding the study on computational domain independence, we
conducted tests with different computational domains. The time step
and grid spacing were kept constant at Dt ¼ 0:0001T and
Dx ¼ 0:01L, where T ¼ 1=fc represents the flapping period. Figure 2
compares the evolution of the horizontal force Fx on the plate and the
velocity (u, v) at the fixed point ðx; yÞ ¼ ð1; 0Þ in the wake. The results
indicate almost no differences in hydrodynamic force and near-field
velocity among cases with three different computational domains, sug-
gesting that the domain ½�5; 10� � ½�5; 5� is sufficiently large to elimi-
nate boundary effects. In this study, we selected ½�15; 45� � ½�15; 15�
as the computational domain to obtain a long enough vortex wake for
DMD analysis.

For the grid independence and the time step independence study,
cases with ðDx=L;Dt=TÞ ¼ ð0:02; 0:0002Þ; ðDx=L;Dt=TÞ ¼ ð0:01;
0:0001Þ, and ðDx=L;Dt=TÞ ¼ ð0:005; 0:000 05Þ were tested. Figure
3(a) shows the horizontal force Fx on the flapping flexible plate as a
function of time. Figure 3(b) show the velocity (u, v) at a fixed point
ðx; yÞ ¼ ð1; 0Þ in the wake, which is the point closest to the trailing
edge of the plate. It is seen that the force curves and velocity curves
for ðDx=L;Dt=TÞ ¼ ð0:01; 0:0001Þ and ðDx=L;Dt=TÞ ¼ ð0:005;
0:000 05Þ agree very well. On the other hand, the curves of
ðDx=L;Dt=TÞ ¼ ð0:02; 0:0002Þ has some discrepancies with those of
ðDx=L;Dt=TÞ ¼ ð0:01; 0:0001Þ. Table I provides data for the horizon-
tal force and velocity (u, v) at the point ðx; yÞ ¼ ð1; 0Þ at two specific
time instances. The first data point corresponds to a time of 1:27T and
represents the minimum value of the horizontal force. The second
data point is at a time of 1:57T and corresponds to the maximum
value of the horizontal force on the flapping flexible plate. The results
of convergence studies show that Dx=L ¼ 0:01 and Dt=T ¼ 0:0001
are small enough to obtain accurate results.
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C. DMDmethod

The basic idea behind DMD is to decompose a given dataset into
a set of modes, each representing a distinct dynamic behavior with
unique frequency. These modes capture the underlying dynamics of
the system and provide a low-dimensional representation of the data.

We utilize DMD to process spatial-temporal data of fluids. The
flow field in each snapshot is x̂k, which is made up of nx � ny grid
points and flow variables of interest at every grid point. The dimen-
sionless time interval between each snapshot is Dt�, the number of
snaphsot used in DMD is N, the chosen snapshots are collected in two
data matrices X̂ ¼ ½x̂1; x̂2;…; x̂N�1� and Ŷ ¼ ½x̂2; x̂3;…; x̂N �. The
first step of DMD assumes that the variables of the fluid satisfy an
approximate linearization condition,

Ŷ ¼ x̂2; x̂3;…; x̂N½ � ¼ Ax̂1;Ax̂2;…;Ax̂N�1½ � ¼ AX̂ : (12)

where A is the systemmatrix of the high-dimensional flow field, which
is used to estimate the dynamic characteristics of the system. The goal
of DMD is to extract dominant eigenvalues and primary modes by

applying mathematical transformations to the matrix A mentioned
above.

Here, the DMD algorithm is briefly introduced as follow:

1. The matrix X̂ is decomposed with the singular value decomposi-
tion (SVD), namely, X̂ ¼ USVT .

FIG. 2. The computational domain independence studies for the case of uniform
incoming flow over a flapping flexible plate with the key non-dimensional parame-
ters: Re¼ 64, S¼ 1000, K¼ 8, and M¼ 0.2. Panels (a) and (b) are the horizontal
force Fx on the body and the velocity (u, v) at the mark point ðx; yÞ ¼ ð1; 0Þ. Fx is
scaled by Fref ¼ 0:5qU2

refL. u, and v are scaled by Uref. The same force dimension-
lessness applies to Figs. 3, 6(a), and 11–16.

FIG. 3. The grid independence and time step independence studies for the case of
uniform incoming flow over a flapping flexible plate with the key non-dimensional
parameters: Re¼ 64, S¼ 1000, K¼ 8, and M¼ 0.2. Panels (a) and (b) are the
horizontal force Fx on the body and the velocity (u, v) at ðx; yÞ ¼ ð1; 0Þ.

TABLE I. The grid and time step independence study: The values of horizontal force
and velocity at ðx; yÞ ¼ ð1; 0Þ at t ¼ 1:27T and t ¼ 1:57T for the flapping flexible
plate model with key parameters, Re¼ 64, M¼ 0.2, K¼ 8, and S¼ 1000.

Dx=L Dt=T t/T Fx u v

0.02 0.0002 1.27 –3.93 6.58 –1.00
0.01 0.0001 1.27 –4.42 6.83 –0.99
0.005 0.00005 1.27 –4.60 6.89 –0.99
0.02 0.0002 1.57 5.50 8.00 –0.79
0.01 0.0001 1.57 4.72 7.77 –0.70
0.005 0.00005 1.57 4.41 7.67 –0.67
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2. To efficiently compute matrix A, the first r columns of matrices
U and V, and the first r rows and columns of matrix S are taken
into consideration. Therefore, ~A ¼ UT

r ŶV rS�r
1. The eigenvalues

kj and eigenvector ~v j of ~A can be obtained with the relationship
of ~A~v j ¼ kj~vj.

3. Each nonzero eigenvalue ki corresponds to a DMD mode Wi as
Wi ¼ l�1

i ŶV rS�r 1~v i.
4. The dimensionless frequency (f) of each DMD mode can be

expressed as f ¼ Imðlog kiÞ=ð2pDt�Þ.
5. The instantaneous flow field can be approximately reconstructed

by a linear combination of the DMD modes as
x̂ t �

Pr
j¼1 Wjkjt�1bj, where bj denotes the amplitude of the

DMD mode Wj.

III. UNSTEADY FORCE EXPRESSION IN TERMS
OF LOCAL VORTICAL STRUCTURES

“Vortices are the tendons of fluid motion.” The importance of
studying vortex dynamics has been widely acknowledged and
respected. Hence, vorticity has become a primary observational quan-
tity in the description of nonlinear flow and the extraction of flow
characteristics using the DMD method. Also, one of the central topics
in vortex dynamics is to explore the relationship between vortex struc-
tures and the forces exerted on the body. The main objective of this
section is to introduce the impulse theory for incompressible viscous
flow and discuss the influence of different types of vorticity field on the
forces acting on the body.

A typical external-flow problem is considered: a material body of
volume VB moves arbitrary in a viscous incompressible fluid, as shown
in Fig. 4. To be sufficiently general, we permit bodies having arbitrary
deformable boundary as in cases of fish swimming and insect flight in
external biofluiddynamics, of nonlinear fluid-solid coupling, and of
flow control by flexible walls, etc. By Newton’s third law the total force
exerted to the body by the fluid is expressed as

FðtÞ ¼ �
ð
@B
ð�pnþ sÞdS; (13)

where p is the pressure, s ¼ lx� n is the viscous force, @B is the sur-
face of the body domain VB. n is the normal vector on the body sur-
face. This force formula serves as a standard result for force
calculation, the primary form of which distinguishes the normal and
tangent components of the stress. However, it keeps silence on what

flow structures generated by the body motion are major causes of the
force, despite huge amount of flow visualization results obtained either
experimentally or numerically have revealed the crucial importance of
these structures for the total force. Equation (13) can be rewritten by
integrals of local momentum balance in a generic control domain Vf

F ¼ �
ð
Vf

qadV þ
ð
R
ð�pnþ sÞdS: (14)

Using the derivative moment transformations,16 we can relate the
hydrodynamic force on the solid body VB to the local vorticities by the
finite-domain impulse theory,17

F ¼ FI þ FL þ F@B þ FR; (15)

where

FI ¼ � dIf
dt

� FIR; If ¼ 1
n� 1

ð
Vf

x � qxdV; (16)

FIR ¼ 1
n� 1

ð
R
x � qxðu� vÞ � ndS; (17)

FL ¼ �
ð
Vf

qx� udV; (18)

F@B ¼ 1
n� 1

ð
@B
x � ðn� qaÞdSþ 1

n� 1

ð
@B
x � quxndS; (19)

FR ¼ 1
n� 1

ð
R
x � quxndSþ 1

n� 1

ð
R
ðx � qrþ sÞdS: (20)

Here Vf is arbitrary fluid domain surrounding the body, which has an
arbitrary external boundary R. The velocity of the boundary is denoted
by v. n is the dimension degree of space. d is the derivative operator.
a ¼ Du=Dt is the acceleration of the fluid, where D is the material
derivative. r ¼ l@x=@n is the vorticity diffusive flux. If represents the
vortical impulse. FIR is the force induced by the impulse overflow at
the boundary R. So if the outer boundry R is a material boundary with
v ¼ u, then FIR is zero. If the outer boundary R is a fixed domain,
v ¼ 0. FL is the vortex force,

16 which is the integral of Lamb vector in
fluid domain. F@B represents the explicit effect of body motion and
deformation, which is a prescribed integral for active motion/deforma-
tion and independent of the flow field. xn ¼ x � n. FR represents the
hydrodynamic force caused by vorticity on outer boundary R.

The model in our numerical simulation is a two-dimensional
incompressible flow around a plate without thickness, and for simplicity,
the density of fluid q is assumed to be 1. In addition, to be consistent
with DMD decomposition based on Euler field, we set the outer bound-
ary of the analysis domain R to be fixed with v ¼ 0. For the plate with-
out thickness, due to the adherence of a; u, and xn, F@B ¼ 0. FR

contains two terms: one is the viscous effect and can be ignored at large
Reynolds number, and the other is due to the cutting of vorticity field at
the outer boundary R, which is zero for two dimensional flow. So the
hydrodynamic force Eq. (15) on the plate can be reduced to

F ¼ FI þ FL þ FR; (21)

where

FI ¼ � d
dt

ð
Vf

x � xdV �
ð
R
x � xundS; (22)

FIG. 4. Schematic illustration of a material body of volume VB moving arbitrary in a
viscous fluid. @B is the body surface. The analysis flow field, Vf, is bounded inter-
nally by the material surface @B and externally by a boundary R. n is the unit nor-
mal vector pointing outside of Vf.
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FL ¼ �
ð
Vf

x� udV; (23)

FR ¼
ð
R
ðx � rþ sÞdS: (24)

It is seen that each term of Eq. (21) is a linear function of vorticity.
Hence, whether the vorticity field is decomposed in space or function
form, the corresponding force expression can also achieve the corre-
sponding decomposition. Corresponding to DMD analysis method,
we discuss the decomposition of vorticity field in function form. If x
can be decomposed into the following form, i.e.,

xðx; tÞ ¼
X
i

xiðx; tÞ; (25)

then

FðtÞ ¼
X
i

FiðtÞ; FiðtÞ ¼ FI;i þ FL;i þ FR;i; (26)

where

FI;i ¼ � d
dt

ð
Vf

x � xidV �
ð
R
x � xiundS; (27)

FL;i ¼ �
ð
Vf

xi � udV ; (28)

FR;i ¼
ð
R

x � l
@xi

@n
þ lxi � n

� �
dS: (29)

Using these formulas, we can obtain the contribution of each DMD
mode to the force, and find out the key modes and influencing mecha-
nisms that affect the force on the body.

IV. RESULTS AND DISCUSSION
A. Convergence study to select DMDmodes
and sampling frequency

The process to determine the number of DMD samples and the
sampling frequency is briefly presented. The numerical simulation is
run at Dt ¼ 0:0001T ¼ 0:0001=fc time steps. Here, we utilize the
DMD decomposition statistics obtained from 250 samples at fre-
quency fsam ¼ 50fc. A convergence study of the number of DMD

samples and the sampling frequency is carried out. Figure 5 shows the
error of mode energy of three most energetic modes in comparison
with reference sampling. We chose a series of sampling frequency and
number of snapshot to validate the accuracy of DMD. The relative
error (RE) is below 1.5% once the dimensionless sampling frequency
exceeds 12.5. As sampling frequency and snapshot number increase,
the RE decreases.

B. DMD for vortical flow over a plate

In this section, the DMD method is employed to extract the
spatial-temporal characteristics of the flow field around a flapping flex-
ible plate. Figure 6(a) shows the temporal domain for the DMD analy-
sis, where the snapshots for DMD analysis are generated over the
range t=T 2 ½10; 15� with the time interval of Dtsam=T ¼ 0:02
(T ¼ 1=fc denotes the flapping period). As shown in Fig. 6(b), the
snapshots are extracted from ½�2; 30� � ½�5; 5�, which contains about
five pairs of vortices. Note that the DMD analysis is performed when
the time-averaged performance metrics change by less than 1%.

Figure 7(a) presents the eigenvalue distribution of DMD modes
in the complex space and the amplitude of DMD modes is shown in
Fig. 7(b). It is evident from Fig. 7(b) that the frequencies of the domi-
nant DMD modes are all integral multiples of the plate’s flapping

FIG. 5. Error trends of mode characteristic value for mode (a) f � ¼ 0, (b)f � ¼ 1, and (c) f � ¼ 2, where f � ¼ f=fc , fc is the flapping frequency, f is the characteristic frequency.
Here fsam is the sampling frequency. k is the sample number. The reference case is fsam=fc ¼ 50, k¼ 250. The errors are calculated by Error ¼ jki � ki;ref j=jki;ref j, where ki
is the eigenvalue of i-th mode.

FIG. 6. (a) The sampling time domain and (b) the sampling spatial domain of the
DMD process. The yellow zone in Panel (a) covers the time range t=T � ½10; 15�.
The region inside the blue box satisfies ðx; yÞ 2 ½�2; 30� � ½�5; 5�.
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frequency fc. Figure 8 shows the vorticity contours for modes 1 to 8,
where mode 1 (f � ¼ 0) denotes the time-averaged vorticity field.
Mode 2 (f � ¼ 1) represents the primary vortex street, which is consis-
tent with the 2P wake vortex street in the original fow field. Another
should be noteworthy that modes 2, 4, 6, and 8 (f � ¼ 1; 3; 5; 7) show
symmetric vortical wake patterns, corresponding to the convection of
large scale structures downstream the plate.38 Modes 1, 3, 5, and 7
(f � ¼ 0; 2; 4; 6) show anti-symmetric wake patterns, corresponding
to the shedding of the vortices in the wake of the plate.

To quantitatively verify the feasibility of the DMD modes, the
flow fields reconstructed by the DMD modes are compared with the
original flow field shown in Fig. 9. It can be seen that the error between
the flow field reconstructed by the first 25 modes and the original flow
field is only 0.12%, which demonstrates the correctness of the DMD
results. It also implies that the DMD modes with high amplitude are
the dominant components of the original flow field.

Here, we use enstrophy x2=2 to estimate the total amount of
shearing in the flow domain for each mode. As is shown in Fig. 10(a),
we measured the enstrophy integral on each x-cross section in the
wake of the plate, i.e.,

Ð
xW
x2=2dS, where xW is the x-coordination of

the integral surface. It can be seen that, except for the first few modes,
enstropy decreases significantly as the wake integral cross section
moves downstream. With the increase in mode number, the enstropy
decreases obviously. Figure 10(b) shows the integral of the enstrophy
on the whole DMD spatial domain and the wake vortical region
(x 	 2) for each mode, respectively. We found that, except for mode 1,
the enstrophy of the entire DMD zone and the wake region (x 	 2)
decreases significantly with the increase in the modes. The variation
trend of enstrophy with DMD modes is consistent with that of energy

FIG. 7. (a) Eigenvalue distribution of DMD modes. (b) Energy amplitude distribution
of DMD modes as a function of dimensionless frequency. The snapshot number
k¼ 250 and dimensionless sampling frequency fsam=fc ¼ 50 here.

FIG. 8. DMD of flow around a flapping flexible plate. Panels (a)–(h) are corresponding to modes 1–8. The vorticity ranges from �1 (blue) to 1 (red). The vorticity is non-
dimensionalized by Uref=L.
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amplitude with DMD modes in Fig. 7(b). Especially for the case of
mode 	 10, the vorticity in the wake region can be basically ignored.
Considering the impulse theory mentioned before, only the domain
with vorticity contributes to the force. It can be inferred that the contri-
butions of the high frequency modes to the force does not depend on
the selection of the wake region.

C. Force contribution by DMD modes

From the observation of Fig. 6(b), it can be concluded that the
reversed K�arm�ann vortex street generates two vortices with the same
sign within half a cycle, and its flow can be classified as the 2P wake
mode.39 Furthermore, through the DMD analysis discussed in Sec.
IVB, it is evident that the vortical structures of each mode significantly
differ from those of the actual flow field. In this section, we utilize the
expression (26) to analyze the force contributions of DMD modes for
the flapping flexible plate.

Figure 11(a) depicts the time-varying force, where Fx and Fy rep-
resent the horizontal and lateral components of the total hydrody-
namic force acting on the plate. We utilized Eq. (21) on the real
vorticity field to estimate the force exerted on the plate. We then com-
pared this approximation with the conventional outcome obtained
from Eq. (13). Our investigation reveals that the force data can be
effectively obtained through the utilization of the real vorticity field. To
capture the primary modes that contribute to the force, we calculate
the cumulative contribution of the first nM modes. We observe that the
cumulative contribution of the initial 8 modes encompasses the major-
ity of the force information. Furthermore, when considering nM¼ 15,
the reconstruction of the force achieves a satisfactory level of accuracy.

Figure 12 also presents the mean absolute error (MAE) and rela-
tive error (RE) associated with the force computation using the cumu-
lative sum of the first nM modes. The MAE and RE are calculated
using the following equations:

MAEðnMÞ ¼ 1
50

X50

m¼1
jF̂ nM ;m � FSTD;mj; (30)

REðnMÞ ¼ 1
50

X50

m¼1
jF̂ nM ;m � FSTD;mj=jFSTD;mj: (31)

Here, nM represents the number of modes to be summed, m denotes
the snapshot’s sequence number, F̂ nM ;m signifies the force at t=T
¼ 10þ ðm� 1Þ=50 computed using the cumulative sum of the first
nM modes, i.e., F̂ nM ¼ F1 þ F2 þ � � � þ FnM , where Fi is the force con-
tributed by ith mode calculated by Eq. (26). FSTD;m denotes the stan-
dard result obtained from Eq. (13). Additionally, we computed the
MAE and RE for the force calculated using the actual vorticity field.
Although the enstrophy of the DMD flow field does not converge for

FIG. 9. Reconstruction of the time series vorticity field using different number of
modes. (a) 25 modes. (b) all modes. (c) original vorticity field. The RE is defined as
RE ¼P250

m¼1 j~X nM ;m � X̂ mj=jX̂ mj. where m is the sequence number of snapshot,
nM is the number of the modes, ~X is reconstructed vorticity field and X̂ is original
vorticity field. The vorticity ranges from –10 (blue) to 10 (red). The vorticity is non-
dimensionalized by Uref=L.

FIG. 10. (a) The enstrophy integral on each x-cross section in the wake of the plate as a function of the x-coordinate of the x-cross section, xW. (b) The enstrophy integral in
the fluid domain contributed by each mode.
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nM¼ 15, it is evident that when nM 	 15, the force is accurately calcu-
lated with a high degree of accuracy, approaching that of the real flow.
This suggests that the number of essential modes associated with the
force is smaller than the number required for the evolution of the flow
field.

As explained in Sec. III, the hydrodynamic force exerted on the
body is determined by integrating a function of vorticity over the fluid
domain Vf and its outer boundary R. Therefore, the choice of the fluid

domain can impact the accuracy of predictions using the first fifteen
modes, which demonstrate good results when the x-coordinate of the
wake surface of R, xW, is set to 30. Figure 10 also illustrates the rapid
decay of the vorticity wake as the mode number increases.
Furthermore, Fig. 13 provides additional insight into the influence of
the integration domain on the accuracy of force calculations using the
first fifteen modes. The standard result is obtained using Eq. (13).
Notably, the force components (Fx, Fy) calculated using Eq. (26) with
different analysis domains exhibit close agreement with the standard
surface stress integral. This confirms that the results are independent
of the size of the wake domain, at least for xW 	 3.

FIG. 11. The evolution of the force on the flapping flexible plate: The standard result is calculated by Eq. (13). The forces contributed by (a) the real flow and the sum of the first
nM modes [(b) nM¼ 3, (c) nM¼ 5, (d) nM¼ 8, (e) nM¼ 15, and (f) nM¼ 25] are calculated by Eqs. (21) and (26), respectively.

FIG. 12. The error of the force prediction by the sum of the first nM modes as a
function of nM. Fx;MAE;RealFlow and Fx;RE;RealFlow represent the MAE calculated by
Eqs. (30) and (31) for the horizontal force prediction of real flow respectively.
Fx;MAE and Fx;RE represent the MAE calculated by Eqs. (30) and (31) for the hori-
zontal force prediction of the sum of the first nM modes, respectively. The subscript
y indicates the corresponding lateral force prediction.

FIG. 13. The influence of integral domain on the accuracy of the force calculation
contributed by the first fifteen modes. The x-coordinate of the wake surface of R is
represented by xW. STD is the standard result calculated by Eq. (13).
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In order to further investigate the impact of the choice of integral
domain on different force components, Fig. 14 illustrates the temporal
evolution of the force contributed by the cumulative sum of the
impulse force and vortex force [FI and FL in Eq. (21)], as well as the

R-force [FR in Eq. (21)] of the first fifteen modes for various integral
domains. The results reveal that the force is primarily influenced by
the cumulative sum of the impulse force and vortex force. Importantly,
the conclusion remains largely unaffected by the selection of the wake’s
integral cross section.

Furthermore, we examined the individual force contributions
from each mode and discovered that the primary contributions stem
from the initial modes. It can also be seen from Fig. 11(d) that the force
curve F̂ 8ð¼ F1 þ F2 þ � � � þ F8Þ is very close to that of standard
result, which means that the force amplitude of the modes greater than
8 is already small. Figure 15 illustrates the force contributed by the first
five modes. As depicted in Fig. 15(a), the hydrodynamic force induced
by the first mode with f � ¼ 0 corresponds to a thrust, providing strong
evidence for the thrust associated with the wake’s mean flow field in a
jet pattern [Fig. 8(a)]. The results also demonstrate that mode 2 with
f � ¼ 1 contributes to a drag force. In addition, Fig. 15(b) reveals that
the lateral force is predominantly influenced by mode 2, which exhibits
the most pronounced antisymmetric vortex street.

Figure 16 presents the time-averaged horizontal force Fx and lat-
eral force Fy as a function of modes with different frequencies. To cal-
culate the time-averaged values, we can use Eqs. (27)–(29). The

FIG. 14. Time evolutions of (a) and (b) horizontal component and lateral component (c) and (d) of the force contributed by (a) and (c) the impulse force and vortex force and
(b) and (d) the R-force for the first fifteen modes. STD is the standard result calculated by Eq. (13). xW is the x-coordinate of the wake surface of the outer boundary R.

FIG. 15. (a) The horizontal force Fx and (b) the lateral force Fy contributed by each
mode (mode ¼ 1; 2; 3 ; 4; 5) as a function of time. STD is calculated by Eq. (13).
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expressions for the time-averaged impulse force F I;i, vortex force FL;i,
and force FR;i are as follows:

F I;i ¼
ð
x¼xW

x � xiudS � U1
ð
x¼xW

x � xi dS; (32)

FL;i ¼
ð
Vf

xi � u0dV ; (33)

FR;i ¼ 0: (34)

Here, u0 ¼ u� U1ex represents the disturbance velocity, which
accounts for the difference between the actual velocity u and the free-
stream velocityU1.

The results in Fig. 16 indicate that the horizontal force is primar-
ily contributed by the first two modes, specifically mode 1 with f � ¼ 0
and mode 2 with f � ¼ 1. The net thrust contributed by mode 1 is
mainly attributed to the impulse force FI, while the net drag contrib-
uted by mode 2 is a combination of the impulse force FI and the vortex
force FL. On the other hand, the lateral force is mainly influenced by
modes 2, 3, and 5. mode 2 with f � ¼ 1 contributes to a positive lateral
force, while modes 3 and 5 with f � ¼ 2 and f � ¼ 4, respectively, con-
tribute to a negative lateral force. Notably, the lateral force contributed
by the impulse force oscillates as the mode increases. Additionally, FR
does not contribute to the time-averaged force. Referring to Fig. 17, it
can be observed that, except for mode 1, the vorticity of each mode at
a fixed point varies sinusoidally with a zero time-averaged value. So
there is no net FR in time average sense.

V. CONCLUSION

Despite the prevalence of DMD analysis, there are very few stud-
ies on its application to an accurate understanding of the force devel-
opment process of fluid-structure interaction problems. In this paper,
we considered the flexible plate flapping in a uniform incoming flow.
We utilized DMD decomposition and impulse theory to interpret the
most significant vortical wake features and their contributions to the
force on the flexible plate interacting with incoming flow. Three dis-
tinct features of the DMD modes of the organized motion are identi-
fied, namely, the shear layer (mean flow field f � ¼ 0), wake composed

of two symmetrical vortex streets (f � is even number), wake composed
of two antisymmetric vortex streets (f � is odd number). We observed
that the twenty five most energetic modes (mode 1 to mode 25) con-
tain � 99:8% of the energy. We used the enstrophy to detect the wake
vortex strength of each mode and found that after a body length down-
stream of the plate the enstrophy is basically contributed by the first
ten modes.

By impulse theory, we found that the force of the plate is strongly
dominated by the several most energetic modes. The integrated force
contribution of the first fifteen modes is close to the standard result of
the surface stress integral, which does not depend on the selection of
the wake integral region. Further, we identify that the net horizontal
force is mainly contributed by the shear flow (f � ¼ 0) and the first
voretx shedding mode (f � ¼ 1), where the former contributes thrust
and the later contributes drag. The net lateral force is mainly contrib-
uted by the modes with f � ¼ 1; 2; 4, where the first mode contributes
the force in the opposite direction to the last two.

In this work, the intrinsic relationship between the physical field
analyzed by DMDmethod and the force on the body is discussed from
the perspective of vorticity dynamic theory for the first time, and it is
applied to the analysis of fluid-structure interaction problem. By iden-
tifying the key modes that affect the force of the body, it will be benefi-
cial to realize the control of the dynamic system in a targeted way.
Although the current analysis strategy is only applied to the flapping
plate case, it is universal and will help to deepen our understanding of
the physical mechanism and select key physical information for flow
control.

It is worth noting that we have not explored scenarios with high
Reynolds numbers. In such cases, the nonlinear effects within the sys-
tem become more pronounced, presenting new challenges for the
application of the DMD method, which is based on the assumption of
linear approximations. This underscores the necessity for further
research in the future regarding the use of DMD to predict high
Reynolds number turbulence.

Furthermore, this paper exclusively focuses on DMD theory
related to spatiotemporal data decomposition and does not explore
other decomposition theories such as proper orthogonal decomposi-
tion (POD). We would like to emphasize that conducting a

FIG. 16. Time-averaged (a) horizontal force Fx and lateral force Fy contributed by each force term calculated by doing time average of Eq. (26) for each mode. FI, FL and FR
are calculated by Eqs. (27)–(29). FIþLþR ¼ FI þ FL þ FR.
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comprehensive comparative study of various dimensionality reduction
models could strengthen the conclusions of this paper.
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NOMENCLATURE

Physical model and mathematical formulation

a Acceleration of the fluid
A Flapping amplitude
ex Unit vector in x direction
Eh Structural stretching rigidity
EI Structural bending rigidity
f Eulerian force vector
fc Flapping frequency
FS Lagrangian force vector
K Bending stiffness ðK ¼ EI=qU2

refL
3Þ

L Length of the plate
M Mass ratio of the plate ðM ¼ qsh=qLÞ
p Pressure of the fluid

Re Reynolds number ðRe ¼ qUref L=lÞ
s Lagrangian coordinate along the plate

S Stretching stiffness ðS ¼ Eh=qU2
refLÞ

t time
u Velocity vector, u ¼ ðu; vÞ
u0 Disturbance velocity

U1 Uniform incoming fluid flowing velocity
Uref Reference velocity for nondimensionalization ðUref ¼ LfcÞ

x position vector for flow fluid, x ¼ ðx; yÞ
xL x coordinate of the leading edge of the plate
yL y Coordinate of the leading edge of the plate

X Position vector for plate
l Dynamic viscosity of fluid
� Kinematic viscosity of fluid
r Vorticity diffusive flux
q Density of the fluid

qsh Structural linear mass density

Numerical method for simulation

c Lattice speed
cs Speed of sound
ei Velocity of particle
fi Distribution function for particles

f eqi Equilibrium distribution function for particles
F i External force corresponding to body force f
T Flapping period, T ¼ 1=fc

U f Fluid velocity at position X
U s Lagrangian velocity of material point of plate
wi Weighting factor for D2Q9 model

a; b Penalty parameters
Dt Time step
Dx Spatial step
ŝ Non-dimensional relaxation time

Force analysis

d/dt Time derivative of the integration variable
D/Dt Material derivative in a continuous medium

F Total hydrodynamic force on plate, F ¼ ðFx; FyÞ
Fx x-Component of hydrodynamic force on plate
Fy y-Component of hydrodynamic force on plate
FI Impulse force
FIR Force induced by impulse overflow at boundary R
F@B Force corresponding to body motion and deformation
FR Force caused by vorticity on boundary R
Fx Time-averaged horizontal force
Fy Time-averaged lateral force
If Vortical impulse
k Sample number of DMD
n Dimension of space
n Normal vector on the surface pointing outside of Vf

VB Body domain
Vf Fluid domain
xW x-Coordinate of the wake integral surface
s Viscous force, s ¼ lx� n
v Velocity of boundary R
R External boundary of fluid domain
r Vorticity diffusive flux

@=@t Time partial derivative of continuous fields
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@B surface of body domain VB

x Vorticity
xi Vorticity of ith DMD mode

DMD analysis

A System matrix in DMD
bi Amplitude of DMD mode
f Characteristic frequency of DMD mode

fsam Frequency of DMD samples, fsam ¼ 50fc
f � Non-dimensional characteristic frequency of DMD mode
F Contributed by ith mode
Fi Hydrodynamic force
FI;i FI Contributed by ith DMD mode
FL;i FL Contributed by ith DMD mode
FR;i FR Contributed by ith DMD mode
F̂nM Summed force contribution of the first nM modes
MAE Mean absolute error of force prediction
nM Number of modes to be summed
RE Relative error of force prediction
x̂k Flow field in each snapshot

X̂; Ŷ Date matrices of snapshots
Dtsam Time interval of DMD samples

k Eigenvalue of ith DMD mode

APPENDIX A: DERIVATION DETAILS OF IMPULSE
THEORY

1. Derivative Moment Transformation

For any piecewise differentiable vector field g and scalar field n
in n�dimensional space with n¼ 2, 3, there are two vectorial inte-
gral identitiesð

V
g ¼ 1

n� 1

ð
V
x � ðr � gÞdV � 1

n� 1

ð
@V
x � ðn� gÞdS; (A1)

ð
V
rndV ¼ � 1

n� 1

ð
@V
x � ðn�rnÞdS; (A2)

where x is the position vector. These formulas are used in the
derivation in Sec. III. And the results are independent of the origin
of x.

2. Generalized Reynolds transport theorem

The Newton–Leibniz formula in elementary calculus is

d
dt

ðbðtÞ
aðtÞ

f ðx; tÞdx ¼
ðb
a

@f
@t

dx þ db
dt

f ðb; tÞ � da
dt

f ða; tÞ: (A3)

This formula can be extented to multi-dimensional space. For a
field quantity H ðx; tÞ in an arbitrary domain D(t), of which
the boundary @DðtÞ may move and change shape over time
with velocity v, the generalized Reynolds transport theorem
yields

d
dt

ð
DðtÞ

H ðx; tÞdV ¼
ð
DðtÞ

@H

@t
dV þ

ð
@DðtÞ

n � vH dS: (A4)

In particular, if we want to trace H in a material volume V under
the velocity v ¼ u, then the above equation yields

d
dt

ð
V
H dV ¼

ð
V

dH
dt

þ ðr � uÞH
� �

dV: (A5)

For a fixed volume, v ¼ 0, then

d
dt

ð
D
H ðx; tÞdV ¼

ð
D

@H

@t
dV : (A6)

3. The derivation of impulse theory

Consider first the kinematic content of
Ð
VadS in Eq. (14). For

any genetic control volume V we haveð
V
adV ¼ 1

n� 1

ð
V
x � ðr � aÞdV � 1

n� 1

ð
@BþR

x � ðn� aÞdS;
(A7)

where

r� a ¼ r� Du
Dt

� �
¼ Dx

Dt
� x � ru: (A8)

For incompressible flow,

� 1
n� 1

ð
R
x � ðn� aÞdS

¼ 1
n� 1

ð
R
x � n� rp

q
þ �r� x

� �� �
dS;

¼ �
ð
R

p
q
ndSþ 1

n� 1

ð
R
x � n� ð�r� xÞ½ �dS: (A9)

so ð
V
adV ¼ 1

n� 1

ð
V
x � Dx

Dt
� x � ru

� �
dV

� 1
n� 1

ð
@B
x � ðn� aÞdS�

ð
R

p
q
ndS

þ 1
n� 1

ð
R
x � n� ð�r� xÞ½ �dS: (A10)

Substituting this equation into Eq. (14), we can obtain

F ¼ � 1
n� 1

ð
V
x � DðqxÞ

Dt
� qx � ru

� �
dV

þ 1
n� 1

ð
@B
x � ðn� qaÞdS

� 1
n� 1

ð
R
x � n� ðlr� xÞ½ �dSþ

ð
R
sdS: (A11)

Since

x � ðx � ruÞ ¼ 0; for n ¼ 2;

r � ðxx � uÞ � x� u; for n ¼ 3:

(
(A12)

We can obtain
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F ¼ � 1
n� 1

ð
V
x � DðqxÞ

Dt
dV � n� 2

n� 1

ð
V
qx� udV

þ 1
n� 1

ð
@B
x � ðn� qaÞdSþ 1

n� 1

ð
@B
x � quxndS

þ 1
n� 1

ð
R
x � quxndSþ 1

n� 1

ð
R
ðx � qrþ sÞdS: (A13)

For a genetic fluid domian V(t) with boundary velocity v, by
the generalized Reynolds transport formula [Eq. (A4)], the above
equation can be rewritten as

F ¼ � 1
n� 1

d
dt

ð
V
x � qxdV � 1

n� 1

ð
R
ðx � qxÞðu� vÞ � ndS

�
ð
V
qx� udV þ 1

n� 1

ð
@B
x � ðn� qaÞdS

þ 1
n� 1

ð
@B
x � quxndSþ 1

n� 1

ð
R
x � quxndS

þ 1
n� 1

ð
R
ðx � qrþ sÞdS: (A14)

APPENDIX B: TIME EVOLUTION OF VORTICITY FIELD
FOR EACHMODE

In order to analyze the force contributed by each mode, it is
important to comprehend the temporal behavior of vorticity for
each DMD mode. Figures 17(b) and 17(c) show the time evolution
of vorticity at two fixed points for mode 1, mode 2, and mode 3. It
has been observed that, apart from mode 1 which exhibits a nonzero
time-averaged vorticity value, the vorticity at each Euler point
undergoes sinusoidal oscillations over time, with a time-averaged
value of zero.
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