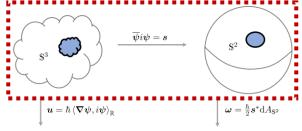
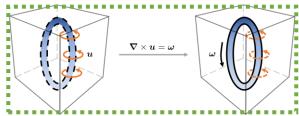
# A CLEBSCH METHOD FOR FREE-SURFACE VORTICAL FLOW SIMULATION


Shiying Xiong, Zhecheng Wang, Mengdi Wang, and Bo Zhu Dartmouth College, USA




**Engineering and Computer Science Center** May 13, 2022

### **CLEBSCH REPRESENTATION**

Express velocity-vorticity field as wave function-spin vector field





# **CLEBSCH FIOW**

- Solve both Euler equation and wave equation
- Blend Eulerian velocity with wavefunction transformed velocity

$$\begin{cases} \frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}t} = -\boldsymbol{\nabla}q \\ \boldsymbol{\nabla}\cdot\boldsymbol{u} = 0 \end{cases} \begin{cases} \frac{\mathrm{D}\boldsymbol{\Psi}}{\mathrm{D}t} = \frac{-\mathrm{i}}{\hbar} \left( q - \frac{|\boldsymbol{u}|^2}{2} \right) \boldsymbol{\Psi} \\ \|\boldsymbol{\Psi}\|^2 = \langle \boldsymbol{\Psi}, \boldsymbol{\Psi} \rangle_{\mathbb{R}} = 1 \\ \langle \mathrm{i}\boldsymbol{\Psi}, \Delta\boldsymbol{\Psi} \rangle_{\mathbb{R}} \\ \boldsymbol{u} = \hbar \langle \boldsymbol{\nabla}\boldsymbol{\Psi}, \mathrm{i}\boldsymbol{\Psi} \rangle_{\mathbb{R}} \end{cases}$$

shiying.xiong@dartmouth.edu https://shiyingxiong.github.io

#### **METHOD OVERVIEW**

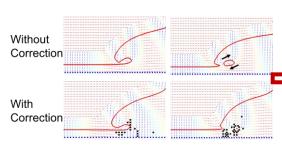
Algorithm 1 Time integration scheme.

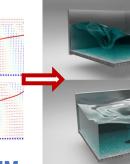
Input:  $\Psi^{(j)}$ ,  $u^{(j)}$ ,  $\phi^{(j)}$ ,  $\beta$ ,  $p_{air}$ ,  $\gamma$ , G

Output:  $\Psi^{(j+1)}$ ,  $u^{(j+1)}$ ,  $\phi^{(j+1)}$ 

 $\Psi^{\star}, \boldsymbol{u}^{\sharp}, \phi^{(j+1)} \leftarrow \text{Advection } (\Psi^{(j)}, \boldsymbol{u}^{(j)}, \phi^{(j)}, \beta)$ 

 $\Psi^{\sharp} \leftarrow \text{Correction } (\Psi^{\star}, u^{\sharp})$ 


 $\Psi^{\flat}, \boldsymbol{u}^{\flat} \leftarrow \text{Projection} (\Psi^{\sharp}, \boldsymbol{u}^{\sharp}, \phi^{(j+1)}, p_{\text{air}}, \gamma, G)$   $\Psi^{(j+1)}, \boldsymbol{u}^{(j+1)} \leftarrow \text{Extrapolation} (\Psi^{\flat}, \boldsymbol{u}^{\flat}, \phi^{(j+1)})$ 


#### SUMMARY

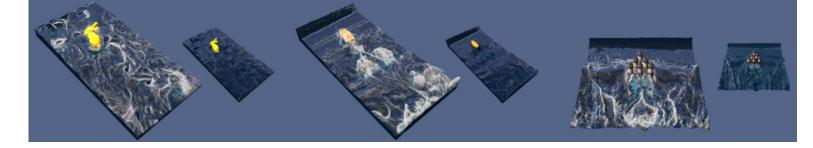
- We propose a **Clebsch method** to solve incompressible fluid equations
- We simulate a wide range of **new free**surface flow, including horseshoe, sink, bubble ring, and wake vortices.

**CITATION:** S. Xiong, Z. Wang, M. Wang, and B. Zhu. ACM Trans. Graph, 41, 116, 2022 (SIGGRAPH, Featured on video trailer)

# **CORRECTION ALGORITHM**










# **BUBBLE FLOW ALGORITHM**

$$p_{\rm air} = {\rm atan} \left[ \left( \frac{V_{\rm tar}}{V} \right)^2 - \left( \frac{V}{V_{\rm tar}} \right)^2 \right]$$



