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Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots
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We extend the vortex-surface field (VSF), a Lagrangian-based structure-identification
method, to study the structural evolution in Klebanoff-type boundary-layer transition. The
VSF is constructed from the instantaneous vorticity fields in a series of sliding windows
at different times and streamwise locations using the boundary-constraint method. The
visualization of VSF isosurfaces displays the Lagrangian-like evolution of vortex surfaces
consisting of vortex lines. The near-wall VSF isosurfaces evolve from wall-parallel planar
vortex surfaces through a train of hairpin-like structures into turbulent spots. In the inception
of turbulent spots, the train of hairpin-like bulges of vortex surfaces induces sinuous
spanwise perturbations on the adjacent flank of lower wavy vortex surfaces, and then
triggers the Kelvin-Helmholtz instability in the spanwise direction. The resultant sinuous
distortion of vortex surfaces propagates in the spanwise direction, which can lead to
the mass production of small-scale, skewed hairpin-like structures and the rapid lateral
growth of turbulent spots. The streaky and hairpin-like structures have strong interactions
in the present Klebanoff-type transition. On the other hand, these signature structures can
be interpreted as different evolutionary geometries of the same set of VSF isosurfaces
at different times and spatial regions, rather than considering them as two different
elementary structures visualized by different structure-identification methods. Furthermore,
the quantified distortion of near-wall vortex surfaces in the lateral growth of young turbulent
spots is highly correlated to the surge of the skin-friction coefficient in the transition.
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I. INTRODUCTION

The generation of turbulent spots is a critical process in boundary-layer transition. This process is
often described as an abrupt structural transition from relatively isolated and ordered flow structures,
such as quasistreamwise vortices, hairpin vortices, and streaks of high- and low-speed velocity, to
chaotic, multiscale structures in a finite region spanning several boundary-layer thicknesses. The
inception of turbulent spots is also important in flow dynamics and various engineering applications,
because it signals the rapid increase of the skin friction in transition.

Although the boundary-layer transition has been extensively studied, there is no consensus on the
accepted geometry of crucial coherent structures and the generation mechanism of turbulent spots. In
general, three mechanisms for the generation of turbulent spots have been reported in the literature,
as follows.
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(1) The hairpin-like structure has been accepted as an important structure in turbulent boundary
layers [1], and the self-induction of hairpin-like structures can form complex structure packets [2,3].
Singer and Joslin [4] observed that the growth of a hairpin vortex generates offspring vortices near
their “legs,” and they eventually form a prematured turbulent spot. Subsequently new hairpin-like
structures at smaller scales are regenerated at the lateral edge of the growing turbulent spot [5,6].

(2) The streaky structure elongated in the streamwise direction has also been considered to play
a key role in the sustainment of turbulence in wall-bounded flows [7,8], and the instability of these
streaky structures can be critical in different transition scenarios [9–11]. Zaki et al. [12,13] argued that
free-stream vortical disturbances in bypass transition trigger the instability of streamwise streaks, and
then the instability causes the formation of turbulent spots. Schoppa and Hussain [14] analyzed the
dynamics for the transient growth of streaky instability, and Wang et al. [15] found that streamwise
streaks with spanwise perturbations can evolve into hairpin-like structures under the streak-transient-
growth mechanism.

(3) Recently several studies realized that both hairpin-like and streaky structures are important
in wall flows, and their interactions can be a dominant mechanism for the generation of turbulent
spots. Schröder et al. [16,17] observed that both hairpins and streaks are prominent in a flat-plate
turbulent boundary layer and proposed a hairpin-regeneration model indicating that the interaction
between the two types of structures is responsible for the self-sustained process of the wall-normal
flow transportation. Brinkerhoff and Yaras [18] concluded that the lateral growth of turbulent spots
is primarily due to the coupling of the regeneration of hairpin-like structures and the spanwise
shear-layer instability. Wu et al. [19] pointed out that the infant turbulent spot is first initiated by
the �-like structure arising from spanwise vortex filaments, and the meandering and breakdown of
streaky structures are triggered by vortical structures inside turbulent spots.

The different interpretations of the generation mechanism of turbulent spots are partly due to
the flow structures visualized by different identification methods. In general, streaky structures are
identified by the streamwise velocity, wall-normal velocity, temperature, or other passive scalars,
while vortical structures are identified by vortex identification criteria based on the Eulerian velocity
gradient tensor such as the Q, λ2, and λci criteria [3,20,21]. The various structure identification
methods have their own strengths and weaknesses. For example, the passive scalars have the
Lagrangian-like nature, such as dye and hydrogen bubbles used in experimental visualization [22], but
they face difficulties of significant scalar diffusion in high-shear regions and lack exact connections
between scalar patterns and vortical structures. The Eulerian vortex identification criteria can
effectively identify intense local rotational regions or “vortex cores” and can be easily implemented,
but the identified structures at a fixed isocontour level at different times may lack time coherence
to elucidate the continuous dynamics of coherent structures. Moreover, a bundle of vortex lines can
reveal vorticity dynamics in the early transitional stage [14,23,24], but in the late transitional or fully
turbulent stage, it is difficult to objectively select seed points so that the chaotic vortex lines have a
uniform spatial density to display smooth coherent structures.

The very different structure identification methods introduce ambiguity and incompleteness in
the structure characterization of turbulent spots perhaps composed of both streaks and vortices
with strong interactions with each other. Although a carefully selected combination of different
structure-identification methods [11,14,19,25,26] can partly alleviate the issues in the structure
characterization, the selection of identification methods and isocontour levels is still subjective [27].
Consequently, different interpretations of structural evolution can result in the continued debate about
the generation mechanism of turbulent spots, and a clear dynamical description of the interaction
between near-wall vortical structures and streaks remains elusive [19].

In order to tackle the issues of the structure characterization, the vortex-surface field (VSF) is
developed for studying the Lagrangian-like evolution of vortical structures [28,29]. Every isosurface
of the VSF is defined as a vortex surface consisting of vortex lines. A typical VSF visualization uses
evolving vortex surfaces along with attached vortex lines and their vorticity magnitude to characterize
vortical structures, which combines the strengths of different identification methods used in wall
turbulence and has a special feature for displaying the Lagrangian-like temporal evolution of a
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FIG. 1. Schematic diagram of the boundary-constraint method for constructing the VSF in a boundary layer.

uniquely defined VSF isosurface with a fixed isocontour value. The VSF has been applied to the
Klebanoff-type (K-type) transition in channel flow to elucidate the continuous temporal evolution of
vortical structures from a Lagrangian perspective [24,30].

In the present study, we extend the VSF to investigate the Lagrangian-like structural evolution in
the K-type transitional boundary layer [31], as a first VSF study on the canonical boundary layer.
Specifically, the boundary-constraint method and the sliding window are developed to efficiently
construct VSFs from a large-scale database of the direct numerical simulation (DNS). We will
elucidate the generation mechanism of turbulent spots using the evolutionary geometry of initially
wall-parallel vortex surfaces, instead of using the “streaks” and “hairpins” with presumed geometries
identified by different methods. Furthermore, we explore the quantitative relationship between the
deformation of vortex surfaces and the rise of the skin-friction coefficient in the generation of turbulent
spots.

The outline of this paper is as follows. In Sec. II we describe numerical methods for constructing
VSFs using the boundary-constraint method and extracting vorticity fields from the full DNS database
using the sliding window. In Sec. III we visualize the VSF isosurfaces and explain the growth
mechanism of turbulent spots. Some conclusions are drawn in Sec. IV.

II. NUMERICAL OVERVIEW

A. The boundary-constraint method

Given an instantaneous three-dimensional vorticity field ω(x,t) at a time instant t , the VSF φv is
defined to satisfy the constraint [28]

Cv ≡ ω · ∇φv = 0, (1)

i.e., the vorticity vector is perpendicular to the normal direction of the VSF isosurface everywhere.
In other words, ω is tangent to the isosurface of φv , and every isosurface of φv is a vortex surface
consisting of vortex lines. We remark that the exact VSF solution must exist for a given instantaneous
flow field with vanishing helicity density u · ω = 0 but the solution is not unique [28], so additional
constraints should be considered to determine a unique φv in a specific flow [24]. For a general velocity
field with u · ω �= 0, we have to seek an approximate VSF solution using numerical methods, which
can be challenging and computationally expansive.

The boundary-constraint method [32] is developed to construct a VSF from instantaneous ω(x,t)
in shear flows. If appropriate boundary conditions of velocity and vorticity are satisfied, the VSFs
constructed from separate vorticity fields at different times can still represent a Lagrangian-like
temporal evolution of the VSF governed by a scalar transport equation. The boundary-constraint
method can significantly reduce the demanding computational cost and required velocity data size,
compared with the two-time method for solving evolution equations of the VSF [29] from a series
of temporally resolved velocity fields.

The schematic diagram of the boundary-constraint method for constructing the VSF in a boundary
layer is sketched in Fig. 1, where x, y, and z denote streamwise, wall-normal, and spanwise
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coordinates, respectively. The VSF constraint Cv = 0 is imposed at the lateral boundary ∂� and
then transported into the computational domain � in pseudotime τ using the frozen vorticity field as

∂φv(x,t ; τ )

∂τ
+ ω(x,t) · ∇φv(x,t ; τ ) = 0, x ∈ �,τ > 0, (2)

ω(x,t) · ∇φv(x,t ; τ ) = 0, x ∈ ∂�,τ > 0, (3)

φv(x,t ; τ ) = φv0(x,t), x ∈ �,τ = 0, (4)

where φv0(x,t) is a given initial condition at τ = 0. The corresponding transport equation for Cv has
the same form as Eq. (2) with Cv = 0 at boundaries. Thus, φv(x,t ; τ ) can converge to a VSF solution
at a large pseudotime through the pseudotransport as φv(x,t) = lim

τ→Tτ

φv(x,t ; τ ) if all the vortex lines

started from the boundary ∂� are ergodic within �. The maximum pseudotime Tτ depends on the
given error tolerance of the VSF solution.

In the numerical implementation, Eq. (2) is advanced in τ using the third-order total-variation-
diminishing Runge-Kutta method, and the convection term is treated by the fifth-order weighted
essentially nonoscillatory (WENO) scheme [33]. The numerical diffusion in the WENO scheme
can serve as a numerical dissipative regularization for Eq. (2). Moreover, in order to increase the
computational accuracy and efficiency in the calculation of Eq. (2), two ghost zones are added next to
the lateral boundaries of the computation domain, in which vortex lines are stretched to be normal to
lateral boundaries of the ghost zones. More details of the boundary-constraint method can be found
in Ref. [32].

B. Extraction of vorticity fields using the sliding window

The calculation of VSFs is implemented as a postprocessing step based on a time series of
instantaneous velocity-vorticity fields in DNS [29,30]. In the present study, the boundary-constraint
method is applied to construct VSFs from the DNS database of the K-type transition in a zero-
pressure-gradient and spatially developed flat-plate boundary layer [31].

In the DNS, the nondimensionalized fully compressible Navier-Stokes equations are solved with
the fourth-order finite difference scheme. The velocity u = (u,v,w) is nondimensionalized by the
free stream sound velocity c∞, where u, v, and w are velocity components in the streamwise x, wall-
normal y, and spanwise z directions, respectively. The free stream Mach number Ma = U0/c∞ = 0.2
with the free stream velocity U∞ is sufficiently low for negligible compressibility effects. The inlet
station from the leading edge of the plate x0 is used as a reference length scale, and the inlet Reynolds
number based on x0 and U∞ is Rex = 105. The time t is nondimensionalized by x0/c∞.

The DNS is computed in a rectangular domain with sizes Lx × Ly × Lz = 9.6 × 0.92 × 0.6 on
a grid Nx × Ny × Nz = 4096 × 550 × 512. Here Lx , Ly , and Lz are sizes in three directions, and
they are nondimensionalized by x0; Nx , Ny , and Nz are the numbers of grid points in three directions.
In order to trigger the transition, Tollmien-Schlichting (TS) waves and oblique waves are introduced
within a narrow disturbance strip near the inlet. The streamwise width l0 = 0.2 of the disturbance
strip equals to the streamwise wavelength λx of the initial TS waves, and the spanwise wavelength
of the oblique wave is λz = 0.15.

A schematic diagram for the implementation of VSFs in boundary-layer transition is presented
in Fig. 2. In order to capture the generation of turbulent spots and reduce the computation cost,
the vorticity field in the computational subdomain � is extracted at separate times and different
streamwise locations from the entire DNS datesets. The VSFs are then calculated in the extracted
subdomains in a series of sliding windows. In the implementation, six windows are applied to six
instantaneous DNS fields, and the window parameters are listed in Table I. Here lx denotes the
streamwise width of a sliding window, xc denotes the center of the streamwise locations of the
window, and �t ≡ t − t0 denotes a tracking time interval, where t0 is the time for the first window
W1 in Table I.
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FIG. 2. A sketch of the evolution of vortex surfaces (solid lines) in sliding windows in boundary-layer
transition along with the rise of the skin-friction coefficient.

As sketched in Fig. 2, the sliding window with increasing xc moves and stretches in the streamwise
direction during transition. The window parameters in Table I are chosen to ensure that the major
deformation of vortex surfaces, whose streamwise extent in the laminar stage is l0, can be captured
within the compact sliding window with large enough lx > λx = l0 [34]. The window height ly =
0.058 is about two boundary-layer thicknesses at the transition point around x = 2.4, so that the
nearly laminar field without vortical structures in the outer layer is excluded. The window width
is lz = λz with −lz/2 � z � lz/2, and the initial flow is symmetric with z = 0. Thus the sliding
window encloses the evolution of the vortical structures generated from one initial TS wavelength,
and the computation domain for VSF calculation is reduced to make the computational cost feasible.

Since Eq. (2) is a pure advection equation driven by ω, the high resolution of φv and smooth
ω are required to achieve a smooth VSF solution. Otherwise the computed VSF isosurfaces can be
underresolved or corrugated. The grid resolution for calculating VSFs in a sliding window is refined as
Nx × Ny × Nz = 768 × 768 × 768. The vorticity field is interpolated from the original DNS data and
is filtered in physical space using Simpson’s rule [35] for smoothing slight spatial oscillations owing
to the fourth-order finite difference scheme in DNS. The filter width is �f = 4[�x�y(y)�z]1/3,
where �x , �y , and �z denote the DNS grid spacing in streamwise, wall-normal, and spanwise
directions, respectively. A sensitivity study was performed to determine the VSF grid resolution
and the filter width. We find that the VSF deviation decreases with increasing VSF resolution, and
the present grid makes a compromise between the acceptable accuracy and computational cost of
the VSF solution. Moreover, the filter width is selected to smooth the spatial oscillation without
eliminating fine-scale vortical structures.

C. Construction of VSFs in boundary-layer transition

The VSF is calculated from the instantaneous vorticity field in each sliding window. We remark
that the nearly laminar velocity-vorticity field with wall-parallel vortex lines and φv0 at the lateral
boundary of a sliding window are almost unaltered during the time period in the present study. Thus
the VSF obtained from the boundary-constraint method at separate DNS snapshots is consistent with
the numerical solution calculated from the two-time method, which is nearly equivalent to describe
the temporal evolution of VSFs using a series of temporally resolved velocity fields [32]. At the mean
time, the computational cost of the boundary-constrained method can be several orders of magnitude
less than that of the two-time method.

TABLE I. The window width, streamwise location, and tracking time interval of sliding windows.

Window W1 W2 W3 W4 W5 W6

lx 0.21 0.25 0.29 0.40 0.42 0.54
xc 2.50 2.67 2.73 2.88 3.14 3.33
�t 0 0.028 0.037 0.055 0.082 0.10
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FIG. 3. The conditional averaged deviation 〈|λω| | φ � φref〉 of near-wall VSFs with different φref in six
sliding windows along x = xc.

In the computation of φv , the boundary condition Eq. (3) is applied in the spanwise direction.
Dirichlet boundary conditions φv = 0 at the wall y = 0 and φv = 1 at y = ly are applied in the
wall-normal direction. Extra ghost zones are added in the streamwise direction where vortex lines
are artificially stretched to be parallel to streamwise boundaries, so that periodic boundary conditions
of φv can be applied. The initial VSF at τ = 0 in Eq. (4) is set as φv0 = y/ly , which ensures that the
VSF is invariant in mean shear flows and is compatible with boundary conditions [24]. The isocontour
level of 0 � φv � 1 represents the scaled wall distance of the wall-parallel vortex surfaces in the
stage before transition.

The deviation of a VSF solution from an exact VSF is quantified by λω ≡ (ω · ∇φv)/(|ω||∇φv|)
[28], which represents the cosine of the angle between the vorticity and the scalar gradient. An exact
VSF solution has λω = 0 everywhere, and an approximate VSF solution with a reasonable accuracy
level should have low VSF deviation as 〈|λω|〉 < 5% or 10%, where 〈 · 〉 denotes the volume average
over the domain of VSF calculation. The averaged VSF deviation 〈|λω| | φ � φref〉 conditioned on
different near-wall level sets φv � φref in each sliding window is shown in Fig. 3. The averaged VSF
deviation is very small (less than 4%), indicating that the vortex surfaces in near-wall regions are
accurately represented by VSF isosurfaces. The deviation increases with x, because the geometry
and topology of vortex lines become more convoluted during transition and the convergence of VSF
deviation becomes slower [32]. In addition, 〈|λω| | φ � φref〉 increases with φref , because |ω| in outer
layers is close to zero and the weak oscillating vorticity causes the relatively large deviation in outer
layers. The VSF isosurfaces remote from the wall, however, are not important in transition dynamics
and are not displayed in following VSF visualization.

To achieve the small averaged VSF deviation, the corresponding Tτ in the implementation is
0.26 with O(105) pseudotime steps. The typical computational cost for calculating the VSF in a
window is O(102)–O(103) CPU hours, depending on the complexity of vorticity, on 192 Intel Xeon
E5 processor cores on the TH-2A supercomputer in Guangzhou, China. It is still computationally
expansive and needs to improve in future work.

III. EVOLUTION OF VSFs IN THE GENERATION OF TURBULENT SPOTS

A. Generation of hairpin-like bulges

We use VSF isosurfaces to study the evolution of vortex surfaces in the generation of turbulent
spots. The isosurfaces with the same initial planar geometry and different initial wall-distances can
have different evolutionary geometries in their evolution. As sketched in Fig. 2, the isosurfaces very
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FIG. 4. Evolution of the isosurface of φv = 0.2 before the inception of turbulent spots in sliding windows (a)
W1, xc = 2.50, (b) W2, xc = 2.67, and (c) W3, xc = 2.73. The isosurfaces are color coded by the wall-normal
distance from blue to red, and vortex lines are integrated from the surfaces.

close to the wall with φv < 0.05 or remote from the wall with φv > 0.5 have only slight deformation
owing to the relatively small disturbances in both regions. On the other hand, the isosurfaces from
the near-wall region can evolve into complex shapes with the maximum deformation [24], and they
are used to characterize the structural evolution in transition.

In Fig. 4 VSF isosurfaces of a fixed contour value φv = 0.2 at three different windows and times
display the generation of the signature hairpin-like structure before the inception of turbulent spots.
As the averaged VSF deviation is very small in Fig. 3, vortex lines are almost attached on the VSF
isosurfaces. From an initial planar vortex surface parallel to the wall, the vortex surface first forms
a triangular bulge in Fig. 4(a) and then evolves into the primary hairpin-like structure with rolling
up of lateral edges of the bulge in Fig. 4(b). Subsequently the primary hairpin-like structure labeled
by “A” is stretched and elevated, and the hairpin “head” A is detached from the original bulge under
the effects of the mean shear and the self-induced motion of vortical structures in Fig. 4(c).

The generation process of the primary and secondary hairpin-like bulges in Fig. 4 is very similar to
that in transitional channel flow (as sketched in Fig. 22 in Ref. [24]), which has been elucidated from
reduced model vorticity equations with the Helmholtz vorticity theorem and the Biot-Savart law,
but subsequent evolutions of VSFs in transitional channel flows and boundary layers are essentially
different. The channel flow has the intrinsic symmetry in the wall-normal direction, so if the channel
is long enough, vortex reconnection will eventually occur between hairpin-like bulges elevated from
opposite walls in transition [30] at low and moderate Reynolds numbers, and then the hairpin-like
structures are destroyed. On the other hand, this type of vortex reconnection cannot occur in boundary-
layer transition, and clear turbulent spots will be generated owing to interactions of coherent structures
in streamwise and spanwise directions, which will be elaborated in following subsections.

In Fig. 5 we also display the evolution of isosurfaces of the Q criterion [20]. In contrast to using the
fixed isocontour value in Fig. 4, we have to intentionally adjust the threshold of Q/Qmax to display
the structures at intermediate scales with some time coherence, where Qmax is the maximum value

FIG. 5. Evolution of the isosurface of the Q criterion with different isocontour values before the inception
of turbulent spots in sliding windows (a) W1, xc = 2.50, Q = 0.5Qmax, (b) W2, xc = 2.67, Q = 0.05Qmax, and
(c) W3, xc = 2.73, Q = 0.05Qmax. The isosurfaces are color-coded by the wall-normal distance from blue to
red, and vortex lines are integrated from the surfaces.
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of Q in each sliding window. Since vortex lines are significantly misaligned with the Q isosurfaces,
the structural evolution of Q cannot be directly explained by the vorticity equation and related vortex
dynamics. By utilizing the VSF, Zhao et al. [24] found that the tubelike “vortex cores” identified
by Q or other Eulerian vortex criteria are formed by rolling up of initially planar vortex surfaces as
displayed in Fig. 4 with significant vorticity intensification. This formation process of the tubelike
axial vortices can be considered as a nontrivial three-dimensional extension of rolling up of vortex
sheets which was analyzed in two-dimensional theoretical models [36].

B. Sinuous distortion of vortex surfaces

The evolution of VSF isosurfaces in the inception and growth of turbulent spots is shown in Fig. 6.
The volumetric rendering is used to display the deformation of the isosurfaces at a range of φv from
0.05 to 0.4. The bulges of vortex surfaces, as “hairpin heads,” are labeled by capital letters, and lower
wavy vortex surfaces, as “streaks,” are labeled by dashed lines. In particular, the secondary hairpin
head and the nearby distorted streak, which are two typical objects in the present structure tracking,
are labeled by yellow and light blue circles, respectively.

The primary and secondary hairpin-like structures labeled by “A” and “B” are stretched from the
triangular bulges with elongated “legs” in the streamwise direction, and the tertiary hairpin “C” in
Fig. 6(a) and more hairpins “D,” “E,’, “F,” and “G” in Fig. 6(b) are induced to form a elongated
packet or train of hairpins as an autoregeneration process [3].

The VSF isosurfaces shown in Figs. 6(a) and 6(c) in adjacent sliding windows (also see Table I) for
two consecutive TS-wave periods can be combined as a whole structure at the same time. The streaky
structure in the upstream of the primary hairpin A around x = 3 and z = ±0.05 in Fig. 6(a) is a wake
structure in the downstream of the “legs” around x = 3.1 of hairpin bulges F and G in Fig. 6(c).
In Fig. 6(a), the structure packet along with the spanwise symmetric plane z = 0 moves faster than
nearby wake streaks from the prior TS period, because hairpin heads have larger y and streamwise
velocity u than near-wall streaks. This velocity difference causes the end-to-end connection between
two structure packets originally at two consecutive TS-wave periods. The overlap region of the
connection grows from x > 2.9 in Fig. 6(a) to x > 3.1 in Fig. 6(c) during transition, which is also
related to the further hairpin-streak interaction discussed below.

In Fig. 6(b), the hairpin train approaches and then passes by nearby streaks. Here wavy near-
wall vortex surfaces with the oscillating wall-normal vorticity identify high- and low-speed streaks
labeled in Fig. 6 [11,14]. As shown in Fig. 7(a), the wavy vortex surfaces around 2.7 < x < 2.8
and 2.95 < x < 3.05 have oscillating ωy dominated by ∂u/∂z as spanwise shear layers between the
streaks on the near-wall x-z slice at y = 0.01.

The train of hairpin-like bulges consisting of �-shaped vortex lines (see Figs. 4 and 8) induces the
spanwise velocity with alternating signs by the Biot-Sarvart law, as shown near z = 0 in Fig. 7(a). The
perturbation of oscillating w on the flank of streaks triggers the Kelvin-Helmholtz (K-H) instability
in the z direction, and the spanwise K-H instability causes the straight streaks very close to the
hairpin train around 2.95 < x < 3.05 and z = ±0.025 in Figs. 6(a) and 7(a) to rapidly distort into
sinuous streaks around 3.1 < x < 3.25 and z = ±0.025 in Figs. 6(b) and 7(b). In Fig. 7(b) the
spanwise shear layers coincide with the oscillating spanwise velocity shown by the alternating solid
and dashed contour lines. Additionally, a close-up view for the sinuous distortion is displayed in
Figs. 8(a) and 8(b).

The lateral growth of young turbulent spots was observed in the visualization of experiments
[37] and large-scale DNS [19], and the mechanism of the lateral growth was explained as the
destabilization of the surrounding streaks. As a more detailed explanation, we find that the sinuous
distortion of the near-wall wavy vortex surfaces can be one of the critical mechanisms in the lateral
growth. On the other hand, the sinuous distortion cannot be identified from the evolution of isosurfaces
of Q in Fig. 9 owing to the lack of time coherence and incomplete visualization of vortex surfaces.
We only observe that some small-scale structures are generated near the hairpin train in Fig. 9. This
observation sometimes was simply interpreted as the visual “breakdown” of large-scale vortices.
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FIG. 6. Evolution of isosurfaces of 0.05 � φv � 0.4 in the generation of turbulent spots in sliding windows
(a) W4, xc = 2.88, (b) W5, xc = 3.14, and (c) W6, xc = 3.33. The VSF isosurfaces are color-coded by wall-
normal distance. The translucency of the surfaces is increased from 20% for φv = 0.05 to 90% for φv = 0.4.
This volumetric rendering is sketched in the bottom right schematic diagram. The hairpin heads are labeled by
capital letters, and streaks are labeled by dashed lines. The secondary hairpin head and the nearby distorted
streak, which are two typical objects in the structure tracking, are labeled by yellow and blue circles, respectively.
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FIG. 7. Contours of the spanwise shear ∂u/∂z and contour lines of the spanwise velocity w = 0.005 (solid
lines) and w = −0.005 (dashed lines) on near-wall x-z slices at y = 0.01 in sliding windows (a) W4, xc = 2.88
and (b) W5, xc = 3.14.

Nonetheless, the underlying physical mechanism of this abrupt process appears to be elusive in
terms of vortex dynamics.

C. Spreading of sinuous distortion

Subsequently, the distorted vortex surface with the growing magnitude of sinuous motion forms
a train of skewed, incomplete hairpin-like structures around 3.2 < x < 3.4 and z = ±0.025 in
Fig. 6(c). The similar generation process of near-wall quasistreamwise vortices from straight streaks

FIG. 8. A close-up view for the generation process of sinuous distortion and a pair of new hairpin-like
bulges. Some portions of the VSF isosurface φv = 0.28 are extracted from Fig. 6. (a) W4, xc = 2.88, (b) W5,
xc = 3.14, and (c) W6, xc = 3.33. The surfaces are color-coded by wall-normal distance. The hairpin heads are
labeled by capital letters, and streaks are labeled by dashed lines. The new hairpin-like bulges generated when
the primary hairpin train passes by adjacent streaks are labeled by circles. Some vortex lines are integrated from
the surfaces.

074701-10



SINUOUS DISTORTION OF VORTEX SURFACES IN THE …

FIG. 9. Isosurfaces of Q = 0.01Qmax in sliding windows (a) W4, xc = 2.88 and (b) W5, xc = 3.14. The
surfaces are color-coded by the wall-normal distance from blue to red.

perturbed by spanwise velocity was observed in the DNS of minimal channel flow [15] and was
explained by the streak-transient-growth mechanism [14] with an analysis based on vortex lines. This
secondary train of hairpins regenerates the spanwise perturbation around z = ±0.025 in Fig. 7(b)
as the primary one along z = 0, and the perturbation also triggers the spanwise K-H instability on
neighboring streaks around z = ±0.05 to further distort spanwise wavy vortex surfaces into more
sinuous streaks with quasistreamwise vortices. In addition, we observe that hairpin head B labeled in
yellow circles gradually passes by the adjacent streak labeled in blue circles in a series of windows
in Fig. 6. The interaction between the “hairpin head” and adjacent “streaks” produces a pair of new
hairpin-like bulges on both sides of hairpin B and around x = 3.4 in Fig. 6(c). A close-up view for
the generation of the new hairpin-like bulges is displayed in Figs. 8(b) and 8(c).

In Fig. 10 the spreading of the sinuous distortion of vortex surfaces is also illustrated as the growing
oscillation of VSF contour lines of φv = 0.2 on y-z slices at the upstream side of hairpin-like bulges
with increasing x. The rolling up of vortex surfaces in the generation of hairpin-like bulges on the y-z
planes is accompanied with the creation of the streamwise vorticity ωx . Moreover, reconnection of
vortex surfaces around z = 0 and the “neck” of hairpin-like bulges is observed from the topological
change of VSF contour lines of φv = 0.4 in Fig. 10(d).

In sum, the mechanism of the spanwise propagation of sinuous distortion appears to lead to the
mass production of hairpin-like structures and significantly accelerates the lateral growth of young
turbulent spots. This process could be a cycling mechanism of scale cascade in the growth of turbulent
spots and finally spreads the distortion on the entire vortex surface to form turbulent-like structures,
e.g., the small-scale structures in the downstream around 3.5 < x < 3.6 in Fig. 6(c). Furthermore,
Goldstein et al. [26] observed that the spreading of turbulent spots is only confined to the periphery

FIG. 10. Contours of the streamwise vorticity ωx and contour lines of φv = 0.2 and φv = 0.4 on y − z slices
at (a) x = 2.55 in W1, (b) x = 2.77 in W3, (c) x = 2.95 in W4, and (d) x = 3.27 in W5.
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FIG. 11. The rise of the wall-friction coefficient and the deformation of near-wall VSF isosurfaces in the
growth of turbulent spots, where the temporally averaged Cf was reported in the DNS study [31] and near-wall
VSF deformation 〈gv|φv � 0.4〉 is calculated in six sliding windows at different x = xc. The region of the lateral
growth of turbulent spots is labeled between dotted lines.

of the spot, so they also concluded that the lateral spreading of turbulent spots is a self-similar
process. Therefore, although the present study focuses on the generation of a young turbulent spot,
the spreading mechanism of sinuous distortion may be applied to more developed spots. We remark
that it is worth examining the role of the sinuous distortion in different transitional boundary layers;
e.g., one could test whether the spreading of turbulent spots can be controlled by locally suppressing
the sinuous distortion near the hairpin train in DNS.

D. Quantification of VSF deformation

The deformation of near-wall VSF isosurfaces shown in Figs. 4 and 6 is quantified by 〈gv|φv �
0.4〉 with gv ≡ |∇φv| in six windows at different x = xc in Fig. 11. We find a coincidence of the
rising wall-friction coefficient Cf and 〈gv|φv � 0.4〉 during the transition, where the temporally
averaged Cf was reported in the DNS study [31]. This observation implies that the drag production
is highly correlated with the VSF deformation.

Furthermore, the spatial distribution of the near-wall VSF deformation is shown in Fig. 12. The
streamwise evolution of the deformation of near-wall VSF isosurfaces is quantified by 〈gv|x,φv �
0.4〉 at four different windows in Fig. 12(a). The deformation of vortex surfaces increases along x,
which agrees with the observations in Figs. 4 and 6. In particular, the double peaks of the dashed-
dotted line in the zoom-in window in Fig. 12(a) quantify the primary and secondary hairpin-like
bulges in Fig. 4(c), and the triple peaks of the dashed line quantify hairpin-like bulges A, B, and C
in Fig. 6(a). The migration of the peaks and the increasing spacing between the peaks indicate that
the hairpin-like structures and the entire structure packet are stretched in the streamwise direction.

The spanwise distortion of near-wall VSF isosurfaces in the lateral growth of turbulent spots is
quantified by 〈gv|z,φv � 0.4〉 at different z and x = xc in Fig. 12(b). Since the VSF deformation is
almost symmetric with z = 0, it is only displayed at z � 0. The large VSF deformation is confined in
−0.02 � z � 0.02 at xc < 2.88, corresponding to the formation of the hairpin train in Figs. 4, 6(a),
and 10(a)–10(c), and then it rapidly spreads out with the sinuous distortion of vortex surfaces in
Figs. 6(b) and 6(c) and 10(d). The lateral growth of turbulent spots also coincides with the surge of
Cf at 2.73 � x � 3.33 labeled in Fig. 11 and the surge of 〈gv|x,φv � 0.4〉 in Fig. 12(a).
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FIG. 12. The deformation of near-wall VSF isosurfaces calculated in four windows (W1, W3, W4, and W6)
in the growth of turbulent spots. (a) Distribution of 〈gv|x,φv � 0.4〉 in the streamwise direction at different
x = xc; (b) distribution of 〈gv|z,φv � 0.4〉 in the spanwise direction at different x = xc.

E. Remarks on structure-identification methods

The interpretation on the generation mechanism of turbulent spots depends on the coherent
structures visualized by different identification methods. The structures identified by the isosurfaces
of conventional u and the Q criterion [20] at xc = 3.33 are shown in Fig. 13 for comparison. The
isosurface of u displays only sinuous streaks very close to the wall, which is similar to the bottom
portion of VSF isosurfaces in Fig. 6(c). The isosurface of Q displays only hairpin-like vortex cores,
which is similar to the upper portion of VSF isosurfaces in Fig. 6(c). Thus it is interesting that
the superposition of the isosurfaces of u and Q, as a composite structure in Fig. 13(c), appears to
resemble the VSF isosurfaces in Fig. 6(c). We remark that hairpin heads A, C, and D are blurring
in Fig. 6(c) owing to the dissipative numerical regularization, but it can be improved by increasing
the VSF grid resolution. Additionally, the similar hairpin-streak interaction is also observed in the
bypass boundary-layer transition if we superpose the isosurfaces of the temperature and the swirling
strength [3] in Fig. 1 and supplemental movies S1 and S2 in Ref. [19].

FIG. 13. Isosurfaces of u and Q in the sliding window W6 at xc = 3.33. (a) Isosurface of u = 0.1,
(b) isosurface of Q = 0.01Qmax, (c) superposition of the isosurfaces of u and Q in Figs. 13(a) and 13(b).
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TABLE II. Typical flow structures identified by different methods in K-type transitional wall flows in the
literature, and corresponding geometries of vortex surfaces with their generation mechanisms investigated in
the present study and former ones [24,30].

Typical flow structure Geometry of the vortex surface with generation mechanism

Laminar shear flow Wall-parallel planar surface
�-like structure Triangular bulge from wall-normal disturbed surface in shear flow
Hairpin and packet Hairpin bulges from rolling up and stretching of triangular bulge
Streak Wavy surface at downstream of hairpin “legs”
Turbulent spot Sinuous distortion of wavy surface from hairpin-streak interaction
Breakdown to turbulence Fully distorted surface owing to all the mechanisms above

On the other hand, neither the isosurface of u nor Q can reveal complete vortex surfaces and
elucidate the whole dynamical process in the structural evolution. Furthermore, the isocontour levels
of u and Q have to be carefully selected to seek the structures with presumed geometry and time
coherence. The subjectivity introduced in the threshold selection and structure-identification methods
can result in the debate and confusion in the structure characterization in the literature. By contrast,
we use the same level sets of the evolving VSF to display the Lagrangian-like evolution of the
integrated vortex-surface structure from the laminar stage to the late transitional stage, rather than
using different identification methods with varied isocontour levels in the studies from the Eulerian
view.

Thus we can elucidate most of the important structures and their generation mechanisms using
the vortex surface, as a single structure object, in the Lagrangian framework of structural evolution.
Typical Eulerian structures and their corresponding geometries of vortex surfaces with inception
mechanisms are summarized in Table II.

IV. CONCLUSIONS

The VSF is extended to elucidate the generation mechanism of turbulent spots in the K-type
transitional boundary layer from a Lagrangian view. The boundary-constraint method is developed
to construct VSFs in a series of sliding windows. The windows extract instantaneous vorticity fields at
different times and streamwise locations, and they contain evolving flow structures whose streamwise
extent in the laminar stage is equal to the streamwise wavelength of the initial TS waves.

The visualization of VSF isosurfaces displays the Lagrangian-like evolution of vortex surfaces
consisting of vortex lines with different wall distances in the laminar state. We label and track the
signature coherent structures in a time series of evolving vortex surfaces. Then we observe the order
of important events in the generation of young turbulent spots and explain the underlying flow physics
of each event.

First the near-wall VSF isosurfaces evolve from wall-parallel planar vortex surfaces into a train
of hairpin-like structures. In the inception of turbulent spots, the train of bulges of vortex surfaces (or
“hairpin heads”) consisting of �-shaped vortex lines induce sinuous distortion, via the Biot-Sarvart
law, on lower wavy vortex surfaces (or “streaks”), and then triggers the K-H instability in the spanwise
direction. The sinuous distortion increases in the streamwise direction and propagates in the lateral
direction, which can lead to the mass production of small-scale, skewed hairpin-like structures and
the rapid lateral growth of turbulent spots. This process appears to be a cycling mechanism of scale
cascade towards the fully turbulent state in boundary-layer transition. We remark that the “streak”
and “hairpin” structures frequently mentioned in the literature have strong interactions in the present
K-type transition, but they can be interpreted as different evolutionary geometries of the same set of
vortex surfaces at different spatial regions and times, rather than considering them as two different
elementary structures visualized by different structure identification methods.
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Furthermore, the surge of the skin-friction coefficient is highly correlated to the near-wall VSF
deformation in the lateral growth of turbulent spots. This quantitative result supports that the sinuous
distortion of vortex surfaces plays an important role during transition and implies that it is possible
to develop a model of Cf based on the structural evolution. Additionally, the increase of Cf can
be correlated with the statistical feature of other structure-identification methods, which can be
considered in further work.

Although the present study is restricted to the K-type natural transition, the VSF with the boundary-
constraint method can be applied to other cases, e.g., the Herbert-type [31] and the bypass [19]
boundary-layer transitions as well as pipe transition [38] to explore whether universal flow structures
or processes exist in the transitions in canonical wall-bounded flows.
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