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We develop a boundary-constraint method for constructing the vortex-surface field (VSF) 
in a three-dimensional fluid velocity–vorticity field. The isosurface of the VSF is a vortex 
surface consisting of vortex lines, which can be used to characterize the evolution of 
vortical structures in a Lagrangian sense. The evolution equation with pseudo-time is 
solved under the VSF boundary constraint to obtain a numerical solution of the VSF. 
Compared with the existing two-time method, the boundary-constraint method constructs 
the VSF from a single velocity dataset at a given time instead of a time series of 
velocity fields starting from a simple condition. This improvement significantly increases 
the applicability of the VSF method and reduces the demanding computational cost and 
required velocity data size. Using the boundary-constraint method, we construct the VSFs 
in Taylor–Green flow and transitional channel flow. In addition, the uniqueness of the 
VSF solution is discussed and the convergence of the error in the calculation of VSFs is 
analyzed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Vortices are often described as “the sinews and muscles of turbulence” [1], but their identification is hindered by the 
lack of consensus on the mathematical definition. The existing techniques of the vortex identification can be categorized 
into Eulerian- and Lagrangian-based approaches.

Eulerian-based methods of the vortex identification define a function evaluated point-by-point and then classify each 
point as being inside or outside a vortex using a criterion based on the point values. Based on the kinematics implied 
by the vorticity or the velocity gradient tensor, some Eulerian vortex-identification techniques were proposed, e.g., the 
Q -criterion [2], the λ2-criterion [3], the �-criterion [4], and the swirling strength [5]. These Galilean-invariant vortex criteria 
can effectively identify some typical vortical structures, in particular, the “vortex cores”, but they also have some weaknesses 
[6,7]. Since the Eulerian methods are based on the instantaneous local velocity field, they cannot characterize the interaction 
between the vortical structures lying at different locations [8], and characterize the continuous temporal evolution of a 
vortical structure [9].

Lagrangian-based methods of the vortex identification appear to be more natural to describe the continuous evolution of 
vortical structures than the Eulerian approach. Based on the vortex-dynamic paradigm in fluid mechanics, the vortex-surface 
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field (VSF), which identifies vortices using the isosurfaces of the VSF, was proposed by Yang and Pullin [10]. In a general 
sense, the vortex surface—examples of which are vortex tubes and sheets [11,12]—can be defined as a smooth surface or 
manifold embedded within a three-dimensional velocity field, the property of which is that the vorticity is tangent to the 
surface at any point.

The VSF φv , a smooth scalar function, satisfies the constraint that the gradient of φv is normal to the vorticity every-
where. This constraint is a first-order homogeneous linear partial differential equation whose characteristic equation is a 
three-dimensional nonlinear dynamical system [13]. Thus the construction of vortex surfaces can be considered as a special 
case of finding two-dimensional invariant manifolds or invariant tori of a three-dimensional vector field. The calculation 
of a smooth invariant manifold for a finite-dimensional system was investigated using block M-matrix properties to estab-
lish the stability and error estimation [14,15]. The invariant tori in Hilbert space were computed by the Fourier method 
[16]. The Lagrangian coherent structure was constructed to capture the distinguished surface of trajectories in a dynamical 
system, which exerts a major influence on nearby trajectories over a time interval of interest [17–19]. The construction of 
vortex surfaces in highly symmetric flow was solved analytically using first integrals [20]. However, the existence of globally 
smooth vortex surfaces in general three-dimensional flows remains an open problem.

Besides the construction of the VSF, the evolution of the VSF is of importance in fluid dynamics. Helmholtz [21] obtained 
a central result in vortex dynamics: the vortex lines or surfaces move with fluids as material lines or surfaces, respectively, in 
a perfectly inviscid flow. On the contrary, the vortex surfaces are no longer material surfaces in a viscous flow, so we cannot 
simply “track” the vortex lines and surfaces in an exact Lagrangian manner in real viscous flows. From the Lagrangian view, 
some vortex methods based on vortical elements such as vortex particles [22], vortex filaments [23], and vortex sheets 
[24,25] are developed to compute vortical flows by tracking a number of vortical elements with the aid of substantial 
computational resources, and they require re-meshing and regularization techniques to deal with the topological change of 
vortical structures.

The evolution of material surfaces that are vortex surfaces at the initial time in highly symmetric viscous flows [10]
and transitional channel flows [9] were investigated, and the deviation of the material surface from the vortex surface is 
quantified by the cosine of the angle between the vorticity and the gradient of the VSF. The results demonstrate that the 
deviation between the vortex surfaces and material surfaces becomes significant after the topological changes of vortical 
structures such as vortex reconnection.

The two-time method is developed to characterize the evolution of vortex surfaces in viscous flows properly [26]. This 
Lagrangian-based method provides a numerical dissipative regularization for the ill-posed governing equations of the VSF in 
viscous flows for studying vortex deformation and reconnection [27]. In particular, the two-time method has been applied 
to Taylor–Green (TG) flow, Kida–Pelz flow, and the transitional channel flow to display the temporal evolution of vortex 
surfaces. Numerical results on the evolution of VSFs clarify the continuous vortex dynamics in these transitional flows 
including vortex reconnection, rolling-up of vortex tubes, vorticity intensification between anti-parallel vortex tubes, and 
vortex stretching and twisting from a Lagrangian perspective. This suggests a possible scenario for explaining the transition 
from a smooth laminar flow to turbulent flow and scale cascade in terms of topology and geometry of vortex surfaces.

In the vortex identification, the VSF uses evolving vortex surfaces along with attached vortex lines and their vorticity 
magnitude to characterize vortical structures. Thus the VSF combines the strengths of the passive scalar for showing the 
Lagrangian-based vortex evolution and the Eulerian vortex criteria for identifying the strong vortical elements. At the mean-
time, the VSF overcomes the weaknesses of the existing methods. It builds an explicit mapping from a scalar field to a 
vorticity field and displays the whole vortical structure as a vortex surface rather than broken vortex cores. In addition, 
the VSF can effectively identify the vortex reconnection [28] that is a critical process for the scale cascade in transitions 
and is hard to be characterized via Eulerian-based methods in shear flows [29]. On the other hand, the implementation 
of the two-time method requires a temporally-resolved series of velocity fields [26,29], which can be demanding for high-
Reynolds-number turbulent flows, and requires an accurate initial VSF solution, which in general only exists in the flows 
with vanishing helicity density [20].

In the present study, we develop a new boundary-constraint method for constructing VSFs, which can overcome the 
weaknesses of the two-time method. The evolution equation with pseudo-time is solved under the boundary constraint of 
the VSF to obtain an approximate VSF solution. Compared with the two-time method, the boundary-constraint method can 
construct the VSF from a single velocity dataset instead of the time series, so the computational cost can be significantly 
reduced. In the development of the boundary-constraint method, several important issues are addressed, including the 
requirement for the vorticity field, the convergence of the error, and the uniqueness of the VSF solution.

The outline of this paper is as follows. In section 2, we review the VSF and the two-time method, and then we pro-
pose the boundary-constraint method. In section 3, we present the numerical method for solving the boundary-constraint 
equations and analyze the convergence of the error in the calculation of the VSF. In section 4, the evolution of VSFs in 
two typical transitional flows, i.e., TG flow and transitional channel flow, is calculated. Additionally, the uniqueness of the 
VSF solution obtained from the boundary-constraint method and the two-time method is discussed. Some conclusions are 
drawn in section 5.
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2. Methods for constructing the VSF

2.1. Constraint of the VSF

The VSF φv(x, t) is defined as a globally smooth scalar field whose isosurface is the vortex surface consisting of vortex 
lines, where x is the coordinates in three-dimensional space and t is physical time. The corresponding constraint for the 
VSF [10] is

Cv ≡ ω · ∇φv = 0, (1)

where ω(x, t) = (ωx, ωy, ωz) ≡ ∇ × u is the vorticity calculated from the velocity field u(x, t) = (ux, u y, uz). Eq. (1) is a 
first-order linear homogeneous partial differential equation, and its characteristic equation is

dx

ωx(x, t)
= dy

ωy(x, t)
= dz

ωz(x, t)
. (2)

Setting

dx

ωx
= dy

ωy
= dz

ωz
= ds (3)

in Eq. (2) with the arclength s yields a nonlinear autonomous system [30]

dx

ds
= ω(x, t). (4)

From the theory of the ordinary differential equation (ODE) [13], it is necessary and sufficient that any solution φv of Eq. (1)
is a first integral of Eq. (4), and Eq. (4) can have multiple independent first integrals.

The general, globally smooth solution of Eq. (1), namely the VSF in the context of vortex dynamics, can be expressed as 
φv = F (�1, �2), where �1 and �2 are two independent first integrals of Eq. (4). The continuously differentiable function 
F should be carefully selected to remove the possible singularities in �1 and �2. The non-unique F implies that Eq. (1)
admits multiple independent solutions for φv [10,20]. This non-uniqueness issue can be partly resolved by the additional 
constraint on φv [9] or the numerical method with appropriate regularization as discussed in section 4.4.

In the flows with the vanishing helicity density h ≡ u ·ω = 0, the first integrals of Eqs. (4) can be constructed analytically 
[20]. Nonetheless, for a general vorticity field with h �= 0, Eq. (4) may not be integrable. In other words, the exact VSF 
solution under the constraint Eq. (1) may not exist, so we have to seek an approximate solution of Eq. (1) using numerical 
methods.

2.2. The two-time method

The two-time method can be applied to both incompressible and compressible flows, but here we only consider the 
former one. In a three-dimensional incompressible viscous flow, the velocity field is governed by the Navier–Stokes (NS) 
equations

⎧⎪⎨
⎪⎩

∂u

∂t
+ (u · ∇)u = − 1

ρ
∇p + ν∇2u,

∇ · u = 0,

(5)

with proper initial and boundary conditions, where p denotes the pressure, ρ the density, and ν the kinematic viscosity.
Given the time-resolved velocity fields obtained from the NS equations, the evolution of the VSF can be calculated using 

the two-time method [26]. Firstly, an initial VSF φv0 ≡ φv(x, t = 0) is constructed to satisfy the initial VSF constraint

ω0 · ∇φv0 = 0, (6)

where ω0 ≡ ω(x, t = 0) is the initial vorticity field. Secondly, each time step is divided into prediction and correction steps. 
In the prediction step, the temporary VSF φ∗

v is computed as

∂φ∗
v(x, t)

∂t
+ u(x, t) · ∇φ∗

v(x, t) = ε∇2φ∗
v , t > 0 (7)

with well-defined boundary conditions, where ε is a small effective diffusivity for numerical regulation, which can be 
given explicitly for the diffusion term or determined implicitly by a diffusive numerical scheme for the convection term. 
In general, the temporary φ∗

v deviates from an accurate VSF owing to the breakdown of the Helmholtz vorticity theorem 
in viscous flows, so φ∗

v is projected onto the desired VSF solution through the correction step. In the correction step, φ∗
v is 

evolved in pseudo-time τ at a fixed physical time t as
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Fig. 1. Sketch of the numerical implementation of the two methods for computing the VSF (solid curve: solution of the VSF; dashed arrow: prediction step 
in the two-time method; solid arrow: correction step in the two-time method; dotted arrow: the boundary-constraint method).

∂φv(x, t;τ )

∂τ
+ ω(x, t) · ∇φv(x, t;τ ) = ε∇2φv , 0 < τ � Tτ (8)

with the initial condition φv (x, t; τ = 0) = φ∗
v(x, t) and well-defined boundary conditions, where Tτ is a pseudo-time period 

that is typically less than 100 times of the size of the physical time step. Finally, φ∗
v (x, t) in Eq. (7) is updated by φv (x, t; τ =

Tτ ) from Eq. (8) for each physical time step. This predictor–corrector procedure is sketched as dashed and solid arrows in 
Fig. 1. The numerical schemes for solving Eqs. (7) and (8) are described in detail in [26].

2.3. The boundary-constraint method

Although the two-time method has been successfully used for characterizing the evolution of VSFs and analyzing 
Lagrangian vortex dynamics in highly symmetric flows [26] and transitional channel flows [29], there are two major weak-
nesses of the two-time method, one is the initial velocity–vorticity field must be simple enough to ensure that Eq. (6) can 
be solved, the other is that the computation may need very large dataset for time-resolved velocity fields. Therefore, we 
develop the boundary-constraint method to overcome these weaknesses.

The boundary-constraint equation is proposed as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂φv

∂τ
+ ω · ∇φv = ε∇2φv , x ∈ �, 0 < τ � Tτ , (a)

ω · ∇φv = 0, x ∈ ∂�, 0 < τ � Tτ , (b)

φv = φv0, x ∈ �, τ = 0, (c)

(9)

where � denotes the computational domain. As used in Eqs. (7) and (8), the small effective diffusivity ε can be an explicit 
diffusivity or symbolically reflect the diffusivity of the numerical scheme for numerical regularization. The initial condition 
φv0 should be compatible with the boundary condition. We presume that the VSF limit of φv (x, t; τ ) exists as

φv(x, t) = lim
τ→+∞φv(x, t;τ ). (10)

In order to demonstrate that Eq. (10) can be obtained through the boundary-constraint method, we take ω · ∇ on 
Eqs. (9a) and (9c) and set ε = 0, then we obtain the pseudo-time evolution equation for Cv as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

DCv

Dτ
= 0, x ∈ �, 0 < τ � Tτ , (a)

Cv = 0, x ∈ ∂�, 0 < τ � Tτ , (b)

Cv = C0, x ∈ �, τ = 0, (c)

(11)

where C0 = ω · ∇φv0 and

D

Dτ
= ∂

∂τ
+ ω · ∇ (12)

is a pseudo-material-like derivative [26]. Since Cv in Eq. (11a) is a pseudo-Lagrangian field that is a constant along a vortex 
line owing to the frozen property, the vanishing Cv at ∂� can be transported into the entire � if all the vortex lines started 
from the boundary are ergodic within �. Hence, the limit of Cv is converged to zero everywhere as τ → ∞, and Eq. (10) can 
be satisfied using the boundary-constraint method. The comparison of the two-time method and the boundary-constraint 
method for computing VSFs is sketched in Fig. 1.

Since the solution of Eq. (11a) with ε = 0 can develop exponentially small structures due to the straining nature of the 
vorticity vector field, the inclusion of a finite ε in Eq. (11a) is necessary to resolve a smooth VSF solution with a finite 
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Fig. 2. Schematic diagram of the boundary-constraint method for constructing the VSF in a wall-bounded flow.

spatial resolution [26]. In the implementation, the right hand side (RHS) of Eq. (9a) is not strictly equal to zero, and the 
numerical diffusivity can be introduced by an upwind-type scheme for convection terms.

The diffusion term ε∇2φv with a small effective diffusivity ε > 0 is considered in Eq. (9a), and subsequently the pseudo-
time evolution equation for Cv becomes

DCv

Dτ
= ε∇2Cv − ε

[
(∇2ω) · (∇φv) + 2(∇ω) ⊗ (∇∇φv)

]
, x ∈ �, 0 < τ � Tτ . (13)

The first term in the RHS in Eq. (13) serves as an artificial diffusion term, which helps to transport Cv = 0 at the boundary 
into the interior domain. The other terms in the RHS are coupled with φv and the frozen ω, and their effects on the 
evolution of Cv can be complicated. Thus numerical experiments are carried out in section 4 to demonstrate the effect of 
the artificial diffusion mechanism.

3. Numerical methods

3.1. Numerical schemes and boundary conditions

For solving Eq. (9a), φv is advanced in τ using the third-order total-variation-diminishing Runge–Kutta method, and the 
convection term is approximated by the fifth-order weighted essentially non-oscillatory (WENO) scheme [31]. The pseudo-
time step �τ should be small enough to ensure that the Courant–Friedrichs–Lewy (CFL) number

CFLω = �τ max

( |ωx|
�x

,
|ωy|
�y

,
|ωz|
�z

)
, (14)

of Eq. (9a) is less than 0.5 for the numerical stability, where �x, �y and �z are grid sizes in three directions.
In the boundary-constraint method, the boundary condition of Eq. (9b) should be treated carefully. For the non-slip 

condition, all the vortex lines are tangent to the solid-wall boundary [32], so φv remains the initial value at the wall and it 
cannot be convected into the computational domain. The Dirichlet boundary condition

φv = C w , x ∈ ∂�, 0 < τ � Tτ , (15)

is applied with a constant C w to ensure that the planar vortex surface is attached on the solid wall.
If the boundary is not a solid wall, the vorticity direction can be arbitrary at the boundary. This boundary condition is 

hard to implement numerically, so we transform this boundary into the Neumann boundary condition. As shown in Fig. 2, 
we construct the ghost zones to stretch the vortex lines so that they are normal to the outer boundary of the ghost zone. 
With this technique, Eq. (9b) is degenerated into the Neumann boundary condition

∂φv

∂n
= 0, x ∈ ∂�G 0 < τ � Tτ , (16)

at the boundary ∂�G of the ghost zone, where ∂/∂n denotes the partial derivative of the direction normal to the boundary.
Fig. 3 is a sketch of a two-dimensional grid for the ghost zone. Without loss of generality, we only illustrate the ghost 

zone for the right boundary in Fig. 2. The numerical scheme of this boundary condition is simplified as

φv(Nz + nG) = φv(Nz + nG − 1), (17)

where Nz and nG are the numbers of grids in the z-direction for the original computational domain and the ghost zone, 
respectively, and δG is the width of the ghost zone.

Next we describe how to construct the vorticity in the ghost zone. First, the temporary vorticity ω∗ in the ghost zone is 
obtained by the third-order spline interpolation [33,34] from original grid points (i, j, k), where 1 � i � Nx , 1 � j � N y , and 
1 � k � Nz . Then ω∗ is decomposed into two parts as

ω∗ = ω∗
// + ω∗⊥, (18)

where ω∗
// and ω∗⊥ are parallel to and perpendicular to the boundary, respectively. The parallel part goes to zero smoothly 

within the ghost zone as
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Fig. 3. Sketch of the boundary treatment and grids of the ghost zone on the y–z plane.

ω//(xG) = ω∗
//(xG) f (xG), xG ∈ [0, δG ] , (19)

with the smooth function

f (xG) = exp
[
−iG (1 − δG + xG)iG

]
, xG ∈ [0, δG ] , (20)

where xG is the distance from the original boundary in the ghost zone and iG is an integer. The constants δG = 0.1 and 
iG = 100 are selected to ensure that the transition in f (xG) is smooth in the ghost zone with a small number of grids. 
Finally, the vorticity in the ghost zone is stretched as

ω = ω// + ω∗⊥. (21)

We remark that the auxiliary ghost zone can improve the accuracy of the numerical scheme at the boundary, and Eq. (20)
has no influence on the vorticity in the original flow field.

3.2. Deviation analysis

Eq. (9a) with the VSF boundary constraint is computed in a finite pseudo-time to obtain an approximate VSF solution. 
The deviation of the approximate VSF solution φv from an exact VSF is defined as the cosine of the angle between ω and 
∇φv as [10,35]

λω ≡ ω · ∇φv

|ω||∇φv | . (22)

The VSF constraint Eq. (1) implies that the exact VSF has pointwise λω = 0 within the domain of interest.
Using Eq. (9a) at fixed t and following the analysis [26], we obtain the pseudo-time evolution equation for λω as

Dλω

Dτ
= A λω + B, (23)

with

A (x, t;τ ) = nv · Sω · nv − nω · ∇|ω| − εR�nv · n�, (24)

and

B(x, t;τ ) = εR�nω · n�, (25)

where the entries of the symmetric part of the vorticity-gradient tensor Sω are Sω,i j = 1/2(∂ωi/∂x j + ∂ω j/∂xi), and unit 
vectors and a dimensionless ratio are respectively

nω = ω

|ω| , nv = ∇φv

|∇φv | , n� = ∇2∇φv

|∇2∇φv | , R� = |∇2∇φv |
|∇φv | . (26)

The solution of Eq. (23) has the form of

λω = λω0 exp

(∫
A dτ

)
+ exp

(∫
A dτ

)∫
exp

(
−

∫
A dτ

)
Bdτ , (27)

where the integration path is along the characteristic line of Eq. (23), and the initial deviation is λω0 ≡ λω(x0, t; τ = 0)

where x0 is the initial location.
The first term A in the RHS of Eq. (27) is statistically negative [10] in a flow with straining motion, which implies a 

preferred exponential decay of λω , but the decaying rate can be slow in the two-time method [26]. Because as implied by 
Eq. (11a), Cv , the numerator of Eq. (27), generally remains constant in the corrector of the two-time method without the VSF 
boundary constraint Eq. (11b), e.g., in isotropic box turbulence with periodic boundary conditions [27]. In this circumstance, 
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the decay of λω is only attributed from the increase of |∇φv | in the dominator, and max(|φv |) ∼ O (1/�x) is bounded due 
to the finite spatial resolution.

In the boundary-constraint method, if x0 is at the boundary with λω0 = 0, Eq. (27) becomes

λω(x, t;τ ) = exp

(∫
A (x, t;τ )dτ

)∫
exp

(
−

∫
A (x, t;τ )dτ

)
B (x, t;τ )dτ (28)

along the characteristic line of Eq. (23) from the boundary point x0 to an interior point x. As discussed in section 2.3, if 
the entire computational domain is filled with the vortex lines started from the boundary, then Eq. (28) can be valid for 
every point in the computational domain for large pseudo-times, which represents the small deviation introduced by the 
necessary numerical diffusion for regularization.

Since the characteristic vorticity scale of Eq. (23) is 〈|ω|〉, where 〈·〉 denotes the volume average, the characteristic 
pseudo-time scale for the deviation decay is

T v = L�

〈|ω|〉 , (29)

where L� is the characteristic length scale of the computational domain. For example, L� is the diagonal length of � for a 
cuboid �. This pseudo-time scale is used to scale the required total pseudo-time period Tτ in section 4.3.

The length of the integration path of Eq. (28) is finite owing to the bounded computational domain. This implies that

lim
τ→∞|λω| = 0 (30)

as ε = 0 in Eq. (9a) and B = 0 in Eq. (28). For a finite ε in the numerical implementation, we found the limit is

lim
τ→∞〈|λω|〉 ∼ f w(ε), (31)

from numerical experiments, where f w is a nonlinear function that is discussed in section 4.3.

4. Construction and evolution of VSFs

In previous studies, the VSF has been applied to the TG flow [26] and the transitional channel flow [29] for investigat-
ing the vortex dynamics in the transition using the two-time method. In this section, we revisit the evolution of VSFs in 
these two flow cases using the boundary-constraint method. The objectives are twofold: (1) validate that if the boundary-
constraint method can reproduce the major results from the two-time method with much less computational cost and 
velocity data requirement; (2) discuss the uniqueness of the VSF solutions calculated from different methods and initial 
conditions.

4.1. TG flow

The DNS of the TG flow is carried out to obtain the Eulerian flow field [10,26]. The initial velocity field of the TG flow 
[36,37] is

u = (ux, u y, uz) = (sin x cos y cos z,− cos x sin y cos z,0). (32)

The NS equation (5) in a periodic box of side 2π with the initial condition Eq. (32) is computed using the pseudo-spectral 
method on uniform grids Nx × N y × Nz = 512 × 512 × 512 for the Reynolds number Re = 1/ν .

For calculating the evolution of VSFs in TG flows, the TG symmetries [37] are utilized to reduce the computational cost. 
The computational domain of Eq. (9a) for TG flows is selected as

x ∈ [0,π/2] × [0,π/2] × [π/2,π ]. (33)

The vorticity is perpendicular to the boundary of z = π , namely ωx|z=π = ωy |z=π = 0, so the Neumann boundary condition

∂φv(x, t;τ )

∂z

∣∣∣∣
z=π

= 0 (34)

is applied. The other boundary conditions are constructed using the TG symmetry.
Two independent initial conditions

⎧⎨
⎩

φ
(1)
v0 = 1

2
(cos 2x − cos 2y) cos z, (a)

φ
(2)
v0 = cos x cos y cos z (b)

(35)

are constructed using independent first integrals [20]. The isosurfaces of φ(1)
v0 and φ(2)

v0 within the periodic domain 0 �
x, y, z � 2π are shown in Fig. 4.
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Fig. 4. Isosurfaces of initial conditions in TG flow. Scalar value is extracted as φv0 = 0.5. (a) φ
(1)
v0 = 1

2 (cos 2x − cos 2y) cos z, (b) φ
(2)
v0 = cos x cos y cos z.

Fig. 5. Isosurfaces of the VSF in TG flows from two independent initial conditions for different Reynolds numbers at t = 6. The color on the surfaces is 
rendered by 0 � |ω| � 12. Some vortex lines are integrated and plotted on the isosurfaces of φv = 0.9. (a) Re = 400, φv0 = φ

(1)
v0 , (b) Re = 400, φv0 = φ

(2)
v0 , 

(c) Re = 800, φv0 = φ
(1)
v0 , (d) Re = 800, φv0 = φ

(2)
v0 . (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

The evolution of VSFs is calculated on the uniform grids Nx × N y × Nz = 129 × 129 × 129. The isosurfaces of the VSFs at 
Re = 400 and Re = 800 with different initial conditions φv0 = φ

(1)
v0 and φv0 = φ

(2)
v0 are compared at t = 6 in Fig. 5. The color 

on the isosurfaces of φv is rendered by 0 � |ω| � 12 from blue to red. Some vortex lines are integrated from the points on 
the extracted vortex surfaces. We can see that the vortex lines are almost on the vortex surfaces owing to the very small 
deviation in the simulation.

As shown in Fig. 5, the initially large-scale, blob-like vortex surfaces break down into tube-like structures, and they 
are twisted and flattened either by self-induced dynamics or interactions with others. In addition, the vortex surfaces at 
Re = 800 are more curved than those at Re = 400. The curved and twisted vortex tubes are related to the intermittent 
statistics in turbulence [38,39] and the continuous evolution of vortex surfaces is helpful for understanding the transition 
mechanism in viscous flows, which have been extensively discussed in [26].
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By comparing the results with different φv0, we find that the statistical geometry of vortex surfaces is insensitive to their 
initial conditions. It implies that the boundary-constraint method appears to restore the uniqueness of the VSF solution for 
long times, which is discussed further in section 4.4.

4.2. Transitional channel flow

The NS Eq. (5) with forcing is solved in a channel with sides Lx = 5.61, L y = 2 and Lz = 2.99 in the streamwise x-, the 
wall-normal y- and the spanwise z-directions, respectively. Here, the velocity u is non-dimensionalized by the bulk velocity 
Ub = ∫ 2δ

0 uxdy/L y , where the channel half-height is set to be δ = 1. A time-dependent external force f (t) is added in the 
RHS of Eq. (5) to maintain a constant mass flux in the streamwise direction with Ub ≈ 1.

The Fourier–Chebyshev pseudo-spectral method [40] is used to solve Eq. (5). The non-slip boundary condition is applied 
to the solid walls at y = 0 and y = 2δ, and the periodic boundary condition is applied to both streamwise and spanwise 
directions. In order to trigger the Klebanoff-type transition, a two-dimensional and a couple of three-dimensional Tollmien–
Schlichting waves are imposed on the initial laminar Poiseuille flow. The numerical solver and initial disturbances used in 
the DNS have been described in detail in [9,41].

The wall-friction Reynolds number Reτ ≡ uτ δ/ν = 207.8 is calculated after the flow reaches the fully developed turbulent 
state, where uτ ≡ √

τw/ρ denotes the wall friction velocity with the wall shear stress τw . The numbers of grids in three 
directions are Nx = 384, N y = 385 and Nz = 384. The mesh sizes in wall units in the streamwise and spanwise directions 
are �x+ = 3.04 and �z+ = 1.62, respectively, and the distance of the first grid point from the wall is �y+

w = 0.00695. Here, 
the superscript ‘+’ denotes a non-dimensional quantity scaled by the viscous length scale δν ≡ ν/uτ .

The computational domain of Eq. (9a) is selected as

x ∈ [0, Lx] × [0, L y] × [0, Lz/2], (36)

where the symmetry of the velocity in the transitional channel flow is considered [29]. Since the vorticity is perpendicular 
to lateral boundaries at z = 0 and z = Lz/2 as ωx|z=0,Lz/2 = ωy |z=0,Lz/2 = 0, the Neumann boundary condition is used for 
φv at the lateral boundaries as

∂φv

∂z
(x, t;τ )

∣∣∣∣
z=0,Lz/2

= 0. (37)

The Dirichlet boundary condition is used for φv at solid walls as⎧⎨
⎩

φv(x, t;τ )
∣∣

y=0 = 0,

φv(x, t;τ )
∣∣

y=L y
= L y .

(38)

The periodic boundary condition is used for φv in the streamwise direction.
The initial VSF is determined as φ0 = y by following the criteria proposed in [9]. The isosurfaces of φ0 are parallel to 

the wall, and they are both stream surfaces and vortex surfaces, so they stay invariant in the laminar plane Poiseuille flow. 
The isosurfaces of φv0 with 0 � φv0 � L y/2 represent the initial vortex surfaces from the bottom wall for φv0 = 0 to the 
mid-plane at y = L y/2 for φv0 = L y/2 within the lower half the channel.

The VSF scalar is calculated on the uniform grids Nx × N y × Nz = 768 × 769 × 768 with ω interpolated onto the grids 
for the VSF calculation. The temporal evolution of isosurfaces of φv at different t in the transitional channel flow is shown 
in Fig. 6. The color on the isosurfaces of φv is rendered by 0 � |ω| � 20 from blue to red. Some vortex lines are integrated 
from the points on the extracted vortex surfaces.

As shown in Fig. 6, the temporal evolution of vortex surfaces can capture the reconnection of the hairpin-like vortical 
structures evolving from the initial planar surfaces in the transitional channel flow. In Figs. 6(a) and (b), the thumb-shaped 
bulge is lifted with the amplification of the initial disturbances. The edges of the bulge are rolled up into tube-like structures 
in Fig. 6(c), and the vortex tubes are stretched in Fig. 6(d). Subsequently, the vortex reconnection between the structures 
from opposite halves is observed in Figs. 6(e) and (f). This leads to scale cascade and further transition to turbulence. The 
evolution of the vortex surfaces calculated from the boundary-constraint method and the two-time method are very similar, 
which are further discussed in section 4.4. The comparison of the evolution of isosurfaces of the VSF and the Eulerian 
vortex criterion, and the effect of geometrical and topological changes of vortex surfaces on the drag generation in the 
laminar–turbulent transition are discussed extensively in [29].

4.3. Convergence of deviations in the VSF calculation

For the TG and transitional channel flows discussed in sections 4.1 and 4.2, the decay of the averaged deviation 〈|λω|〉
with pseudo-time τ is shown in Fig. 7. Since all the deviations are below 3%, the boundary-constraint method provides
reasonable accurate VSF solutions in viscous flows.

The characteristic transfer time scale T v defined in Eq. (29) can facilitate the estimation of the computational cost a priori. 
The parameters for calculating T v are listed in Table 1 for the two flows. In numerical experiments, the half-value period 
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Fig. 6. Evolution of isosurfaces of the VSF in the transitional channel flow. Some vortex lines are integrated and plotted on the isosurfaces of φv = 0.6. The 
color on the surfaces is rendered by 0 � |ω| � 20. (a) t = 106, (b) t = 108, (c) t = 110, (d) t = 112, (e) t = 114, (f) t = 116. (For interpretation of the colors 
in this figure, the reader is referred to the web version of this article.)

Fig. 7. Convergence of the averaged VSF deviation with increasing pseudo-time. (a) TG flow at t = 6 (case 1: Re = 400, φv0 = φ
(1)
v0 ; case 2: Re = 400, 

φv0 = φ
(2)
v0 ; case 3: Re = 800, φv0 = φ

(1)
v0 ; case 4: Re = 800, φv0 = φ

(2)
v0 ), (b) transitional channel flow at different times.
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Table 1
Parameters for calculating the characteristic transfer time scale T v in different cases. (a1) TG flow for Re = 400 and φv0 = φ

(1)
v0 , (a2) TG flow for Re = 400

and φv0 = φ
(2)
v0 , (a3) TG flow for Re = 800 and φv0 = φ

(1)
v0 , (a4) TG flow for Re = 800 and φv0 = φ

(2)
v0 , all the TG fields above are at t = 6; (b1) channel flow 

at t = 106, (b2) channel flow at t = 108, (b3) channel flow at t = 110, (b4) channel flow at t = 112, (b5) channel flow at t = 114, (b6) channel flow at 
t = 116.

Case (a1) (a2) (a3) (a4) (b1) (b2) (b3) (b4) (b5) (b6)

L� 2.72 2.72 2.72 2.72 6.14 6.14 6.14 6.14 6.14 6.14
〈|ω|〉 1.48 1.48 1.74 1.74 2.16 2.25 2.39 2.60 2.91 3.23
T v = L�/〈|ω|〉 1.84 1.84 1.56 1.56 2.84 2.73 2.57 2.36 2.11 1.90

Fig. 8. Fitting of Thalf from T v . Triangles: from TG flows (Case a1–a4 in Table 1); squares: from channel flows (Case b1–b6 in Table 1); solid line: least-
squares fit.

Fig. 9. Convergence of the averaged VSF deviation with different explicit diffusivities in the TG flow at t = 6 and t = 7.5 for Re = 400.

Thalf of 〈|λω|〉 is introduced as a characteristic time scale for the decay of 〈|λω |〉, and we find that it can be approximated 
from T v as a least-squares fit T v = 5.0Thalf . The correlation between Thalf and T v is shown in Fig. 8. Therefore, T v is useful 
to estimate the order of the required total pseudo-time period Tτ for obtaining the VSF solution with the averaged deviation 
converged to a low level (e.g., less than 5%).

Besides Tτ , the effective diffusivity ε in Eq. (9a) is important on the numerical convergence of VSF solutions. In order to 
investigate the relation between 〈|λω|〉 and ε , we compute Eq. (9a) in TG flows with a range of explicit diffusivities from 
ε = 10−4 to 0.1 instead of the numerical diffusivity implicitly determined from the WENO scheme in former calculations. 
Here, the diffusion term in Eq. (9a) is approximated by the second-order central difference scheme. As the VSF solutions are 
converged for long pseudo-times, the plot of 〈|λω|〉 versus ε in the TG flow at t = 6 and t = 7.5 at Re = 400 is shown in 
Fig. 9. In Eq. (31), the growth of 〈|λω|〉 satisfies a power-law fω(ε) = ε0.46 at 0.001 < ε < 0.1. We remark that ε implicitly 
determined in the WENO scheme can be reduced by increasing grid resolution [31], so we can reach a compromise between 
the averaged deviation and the computational cost.

The CPU hours for constructing VSFs using the boundary-constraint method in the two flows are listed in Table 2. The 
CPU time depends on the desired deviation tolerance, the maximum value of the vorticity magnitude, and the complex-
ity of the vortex lines in flow fields. We remark that the CPU hours for the boundary-constraint method are two orders 
of magnitude less than those for the two-time method in these cases with the same VSF deviation tolerance, and the 
boundary-constraint method only requires the DNS data at several physical times instead of a time series of DNS data 
which contain thousands of data files.
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Table 2
CPU hours with three deviation tolerances in different cases. (a1) TG flow for Re = 400 and φv0 = φ

(1)
v0 , (a2) TG flow for Re = 400 and φv0 = φ

(2)
v0 , (a3) TG 

flow for Re = 800 and φv0 = φ
(1)
v0 , (a4) TG flow for Re = 800 and φv0 = φ

(2)
v0 , all the TG fields above are at t = 6; (b1) channel flow at t = 106, (b2) channel 

flow at t = 108, (b3) channel flow at t = 110, (b4) channel flow at t = 112, (b5) channel flow at t = 114, (b6) channel flow at t = 116.

〈|λω |〉 Case

(a1) (a2) (a3) (a4) (b1) (b2) (b3) (b4) (b5) (b6)

10% 0.3 0.4 0.5 0.7 87 99 226 450 509 573
5% 0.5 0.7 0.8 1.0 155 160 372 804 1139 1243
3% 0.7 0.8 1.1 1.3 206 221 538 1324 2405 3143

Fig. 10. Isosurfaces of the VSF calculated by two different methods in TG flows for Re = 400 (left column: the boundary-constraint method; right column: 
the two-time method). Color on the surfaces is rendered by 0 � |ω| � 12. Some vortex lines are integrated and plotted on the isosurfaces of φv . (a) and 
(b) t = 3, (c) and (d) t = 7.5. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

4.4. Uniqueness of the VSF solution

Although the VSF constraint Eq. (1) can have multiple independent solutions [10,20], the two-time method appears to 
restore uniqueness to the indeterminate initial–boundary value problem [26,27]. Thus we should check the consistency of 
the boundary-constraint method and the two-time method, and investigate if the two methods can identify similar vortical 
structures.

The vortex surfaces in the TG flow for Re = 400 at different times using the two different VSF-construction methods are 
shown in Fig. 10. By comparing Figs. 10(a) and (b) in the transitional stage at t = 3, the topology of VSF isosurfaces from two 
methods shows differences on the connectivity of flattened vortex blobs [26]. On the other hand, by comparing Figs. 10(c) 
and (d) in the developed turbulent stage at t = 7.5, very similar coherent vortical structures are identified from the two 
methods. By cutting off the surfaces with small vorticity |ω| < 3 that have minor influence on the flow dynamics, the strong, 
tube-like vortical structures constructed by the two different methods are almost identical in Fig. 11. The coherent vortex 
tubes appear to be an attractor in the chaotic vorticity system. The attractor is a bounded set of numerical values toward 
which a system tends to evolve, for a wide variety of initial conditions of the system [42,43]. Hence, the stable and robust 
geometry of vortex surfaces can be obtained from different VSF-construction methods in the flow with chaotic vortex lines.

For wall-bounded flows, the unique VSF solution can be obtained in the steady parallel shear flow with small distur-
bances under certain conditions, which is discussed in Appendix A. For general wall flows, two requirements on φv and 
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Fig. 11. Isosurfaces of the VSF with |ω| ≥ 3 extracted from the entire surfaces in Figs. 10(c) and (d). Color on the surfaces is rendered by 3 � |ω| � 12. 
(a) The boundary-constraint method, (b) the two-time method. (For interpretation of the colors in this figure, the reader is referred to the web version of 
this article.)

ω should be satisfied to obtain the unique VSF. First, we presume the spanwise vorticity ωz is non-vanishing everywhere. 
Then the steady VSF solution of Eq. (1) is obtained from

∂φv

∂z
= −ωx

ωz

∂φv

∂x
− ωy

ωz

∂φv

∂ y
. (39)

According to the Cauchy–Kovalevskaya theorem [13], Eq. (39) has the unique solution for the given boundary condition φv

at z = 0 or z = Lz . The second requirement is that φv at the lateral boundary remains unchanged in the VSF calculation from 
the two-time method and the boundary-constraint method. Thus, the steady VSF solution in the wall flow is determined by 
the initial φv at the lateral boundary, and the VSF can be kept consistent from the two methods. We remark that even the 
two requirements above are not strictly satisfied, we can still obtain nearly consistent VSFs from the two methods.

In our numerical experiment for transitional channel flow, first, the dominate shear motion results in strong ωz . The 
spanwise vorticity is non-vanishing everywhere before vortex reconnection and can be zero at a finite number of locations 
during reconnection [29]. Second, the nearly laminar velocity–vorticity field at the lateral boundary is almost unaltered 
during the time period in the present study, and the initial VSF φv = y at the lateral boundary can stay invariant. Therefore, 
the two requirements of the unique VSF solution can be generally satisfied in our numerical experiment. We demonstrate 
that the evolution processes of vortex surfaces identified by the two methods are almost the same by comparing the results 
in [29] and in section 4.2.

In summary, VSF solutions for a specified vorticity field can be non-unique from different VSF-construction methods 
or initial conditions in the laminar or in the transitional stage unless some conditions depending on particular cases are 
satisfied. Nevertheless, relatively robust vortex surfaces in a developed turbulent flow can be obtained regardless of the 
construction method and initial condition.

5. Conclusions

In the present study, we develop the boundary-constraint method for constructing the VSF. For a given velocity–vorticity 
field at a specified time t , the numerical solution of the VSF is obtained by solving Eq. (9a). The initial condition Eq. (10)
is a smooth scalar field that is compatible with the boundary condition Eq. (9b). In particular, the VSFs in TG flow and 
transitional channel flow are calculated by the boundary-constraint method.

The requirement of calculating VSFs by using the boundary-constraint method is that most of the vortex lines intersect 
boundaries of the computational domain. In the highly symmetric TG flow, although the vortex lines are closed, we cut the 
computational domain based on the symmetries of vorticity, and then calculate the VSF in a subdomain in which the vortex 
lines satisfy the requirement. In the transitional channel flow, the requirement of boundary-constraint method is satisfied 
owing to the dominating mean shear motion with vortex lines passing through lateral boundaries.

The comparison of the new boundary-constraint method and the existing two-time method [26] is summarized in Ta-
ble 3. The boundary-constraint method is more feasible for constructing VSFs in complex shear flows than the two-time 
method. On the other hand, the two-time method is better for characterizing the continuous temporal evolution of vortical 
structures in the early transitional stage in a transitional flow. In the developed turbulent stage, the coherent tube-like vor-
tical structures with strong vorticity extracted from these two different methods are almost identical. Therefore, the VSF is 
a good candidate to describe the evolution of vortical structures. In particular, the VSF evolution can be used to character-
ize stretching, rolling-up, twisting, and reconnection of vortex surfaces to elucidate the scale cascade in transitional flows 
[26,29].
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Table 3
Comparison of the two methods for constructing the VSF.

Boundary-constraint method Two-time method

Velocity–vorticity dataset Separate snapshots Time-resolved series
Computational cost Low High
Requirement for the vorticity Vortex lines passing boundaries Vanishing helicity at t0

Characterize time evolution Conditional Yes

The boundary-constraint method can be applied to construct other two-dimensional manifold of any smooth three-
dimensional vector field. For example, we can construct the magnetic surface consisting of magnetic lines in magneto-
hydrodynamic TG flows [44] using this method. Furthermore, the generalized, efficient VSF construction method should be 
developed for identifying unique evolving vortical structures in an arbitrary flow field.
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Appendix A. Uniqueness of the VSF solution in simple shear flows

In this section, we discuss the uniqueness of the VSF solution in simple shear flows. The velocity field of a steady parallel 
shear flow is u = (U (y), 0, 0) where U (y) is a smooth function, and the corresponding vorticity is ω = (0,0,−∂U/∂ y). 
Substituting the vorticity into Eq. (1) yields the VSF equation ∂φv/∂z = 0. So the general VSF solution of the steady parallel 
shear flow can be expressed as φv = F (x, y), where F is an arbitrary continuously differentiable function.

Now we discuss the consistency of the boundary-constraint method and the two-time method in the steady parallel 
shear flow. The isosurface of φv0 = �(y) is selected as the streamwise–spanwise plane, where �(y) is an arbitrary smooth 
function. Since the isosurfaces of such initial condition stay invariant in the convection induced by vortex lines or stream 
lines, so the two methods construct the identical VSF. However, if the initial condition depends on x or z, the VSF isosur-
face can be stretched in different directions by the predictor Eq. (7) of the two-time method and the boundary-constraint 
equation (9a), so that the two methods construct different VSFs.

Next we consider the steady parallel shear flow with small disturbances. The velocity field is

u = (U (y) + εu(x, y, z), εv(x, y, z), εw(x, y, z)), (A.1)

where εi(x, y, z) with i = u, v, w denotes a small disturbance. The corresponding vorticity is

ω =
(

∂εw

∂ y
− ∂εv

∂z
,
∂εu

∂z
− ∂εw

∂x
,−∂U

∂ y
+ ∂εv

∂x
− ∂εu

∂ y

)
. (A.2)

Since �(y) remains invariant in the calculation using two methods for the steady parallel shear flow, it is also used as 
the initial condition for constructing the VSF in the disturbed steady parallel shear flow. We set φv = �(y) + εφ where 
εφ denotes the small variation of φv in the time or pseudo-time evolution. Then the predictor and the corrector of the 
two-time method can be respectively expressed as

∂εφ

∂t
+ (U + εu)

∂εφ

∂x
+ εv

∂(εφ + �)

∂ y
+ εw

∂εφ

∂z
= 0, (A.3)

∂εφ

∂τ
+

(
∂εw

∂ y
− ∂εv

∂z

)
∂εφ

∂x
+

(
∂εu

∂z
− ∂εw

∂x

)
∂(εφ + �)

∂ y
+

(
−∂U

∂ y
+ ∂εv

∂x
− ∂εu

∂ y

)
∂εφ

∂z
= 0. (A.4)

Ignoring the high order terms in Eqs. (A.3) and (A.4) yields

∂εφ

∂t
+ U

∂εφ

∂x
+ εv

∂�

∂ y
= 0, (A.5)

∂εφ

∂τ
+

(
∂εu

∂z
− ∂εw

∂x

)
∂�

∂ y
− ∂U

∂ y

∂εφ

∂z
= 0. (A.6)

If εv = 0 and ∂εφ/∂x = 0, it is sufficient to obtain a steady solution of Eq. (A.5) in time. The vanishing ∂εφ/∂x requires that 
∂εu/∂z − ∂εw/∂x is independent of x in Eq. (A.6) with εφ = 0 in the initial condition. If the conditions above are satisfied, 
the predictor of the two-time method has no influence on the VSF calculation, then the two methods can construct the 
nearly identical VSF.
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