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FERYE A F O E T 1982 5, IR T A SR I BT Y U SR A AR )
(W& 7 2 )8 7T BE AR I & T4 I B AL (Feynman 1982), &1 7 8 I ME & N Ig 1 4B 78
5L Al | Deutsch (1985) 48 H R H & 7 A MAH T & itk of DL #0 & m p) & 78 LT
T, B T BT R A IR B SRR VRN S M R, B AR A
LEPNRRE, B RS N E R —.

[FEF, 9% 2 R 85 4 H < I A2 22 L) B v B B B R R R M) B (Feynman et al. 2015), I 4h
it PLE AT AR« KM T S A0 A 1 2 SR R R I — 3 e BB TG R A A
BAPIRE, O& T LHURRM AL BAE R, B 7R 2 DN ECE R (8] 5 4 ) R X R
%2 REZARLAEB) g 5 AT 45 i Ui 160 F0000 60 42 o) A g DR s 2 A 80 A 110 L 3 M AR 40 75 2
ELK v 530 58 R, 0 4 A e s e LI RE ), R T U SR AR ) R SR i S R
ERWE 7y (MR8 5m 45 2023). SR, HI T3 0 A2 S 00 10 o =l 2 1 28 S B4 ) AL, =l & 400 i)
B, B TR E G T R AR RUA ) 5 10 R & R

TEAKR 1% & T 11 B (quantum computing for fluid dynamics, QCFD) iX — B M4k v, &
T AV AR R O ) I A 7 S B R R, AR S T R e T . T AR AR
RN HBEKANE T HITHENRS, 2B EAERRLA S HF IR, S SHEEE
F I B0 1) R ) PR AL, DA T AT AR BT R AR TR A% N )

1.1 EFiTERE

B EHURYE SR A B AL £y = 2K B TR AR (Chiribella et al. 2008). 4
RIS (Albash & Lidar 2018) (45 & 7R KA (Das & Chakrabarti 2008)) Hl4f $h &
T (Nayak et al. 2008). FATH DL 0 H W& T LB BR8], FEN A8 T ER
JEHR L A O AN R AR

BEFHEN— KA REENEN. BT A (qubit) &8 FitEH R G R, e T 4
T07A |0) = [1,0]T BL“13& 1) = [0, 1T &b, B WAL T BN [v) = al0) +b[1), Hh o F1 b HE R
., SIS LZOSMUENERLESM, WEF R DLZ“07A X BLEZ“1R
|a|2%u 162 43 S L7 [) A9 10) 50 |1) A HIHERE, H. [a?] + |02 =1, B ) & BAr &, &1 HARe T

o 0 T AR 2 T 4 M <07 A B 145 B 1(a) ¥ Bloch BREY H — & T LLRRIRE
IL@IEH%, ETERMEERRE TS BTN TEL M UESETRAME RIS, 6
JEF B F RS FE MRS, T ERELE T MK+1/2 0 8/M-1/2 48, BRRG
(1) e Jie R0 A e 5

AT R B R AW A & R B R B A, B j00) « [10) +  |o1) Al
11), B BE AT B n A8 7 LRI — RS L. BRI, o AN B BRI S N AS AT H 2 4 Hilbert 8
] C2" (HP A jm) &2 |)) SR H A, R
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{Qu-2:10) —( L e
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wahE T AIL i GtE

1

EFAMETHEAETEA. QQEPETFHHFRASW BlochZk &, A = 44 F R LT
z=sinfcosp, y=sinfsing, z=cosf i, ¥ EFARMB/ILATEG. £ELETFHLERS
|w>:cosgm)+ei¢sing\l>q)ﬂiﬁiﬁ'ﬂ"/l\ﬁ%%ﬂ?a 0) AT AR, 1) ST ER. (b) EFI
BN ITEL B W WAF L, EFTAENFARZ TN E=ZF, BFEFITULUs, - U A NE
¥

11 1
[¥) = Z Z Z Chinary (qndn—1--a2a1) ®|q] (1)

A, binary(qnqn Lo q) BN A n LRI, ¢ € {0,1}, coyery e NEREL WA
— A AF Z \%\2 =1 NMAEE T ENL A, T BN n 08 73748 P R TH 2
0 %] 2m —1 Pra Mm%, eA1% UL— 2 BRI AR FEL M SN, 14 n 95 47 48 A BEfR
714 n b Bk B MAE R TSN, 1A oA 87 2547 45 7] BRI OR A 20 A n Az = 59 1
H, WE 2(a) Frow. 7w e RS SR o 58OGR (RIS ) SN S
%, RBEMARR—A nhi kL

BETIHER S - KA RESHAZE. 2N E T HRENSIA RS RER LA, WFRX L
BEHA T AUEE. B = 7(|00> + |11)) Al [p)p = 7(|01> +110)) MY, T |)o =
\f(|00>+|01>) \f|0> (10) + ) R AU A 22 A &F LR T A A, X345 &7 L
R 2 I B K R i At B LR S RO A & [y) 4 i, E AN E T RS, R —
NETHRNESSZHE, WE 2(b) frn; W [v)p i, W& —NE T RN, K —
TS5 ZM 5 T E [)c I, X A& T A RS AE ATl &, 208 7 IR A R
FEN0) . AR T USRS BN R A A IR, AT uufrﬂj R BT A AL A
Hilbert 2% 8] (Y 2EPEPE BT, XAk T B InaS 9 ) = fz ) HEAT 15 A AT R s

2" —1 2" —1 2" —1

X, 9, 0) = [¢) @10), BIUEAE R 75— R AR m] LU 22N 0 B 2 — 1A iH SR % B
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AL R A — R A A\
@ @A =71

Chinary(q,," (12f1|)® |<1]>

q1, g2, q =0

& A D

|00) |11)

& 2

ETHEEABULEE QAELHEATENF nCFFEFREOOE 2V 1H -, M E
EFIHENY, A TENSH NN ETFHFFEFTRNRAFO0Z 2n—1 AN, €& U—%
MBRENAFLE. O)FLARLBEAESNEETETLE: B d A (J00) + 1) /V2 F # 5 & 7 A
ETANER HEANAEFELATYHES, NEYEY —NEFILENS, BESF —1METH
HWASZMHE. ) EFIHEEAENTHATHNESE, XEMNETFART—KEL R, 7/~
AENOE 2" -1 EBEAE T N EBRE. EPARBHEFENETFLELHNREEN
Z W FAEKTFHENE

Xf N2 B EUE, BDET A o 8 |f(2)), AR IERROVE T 547, FEL M EHL D, R o 8 f(2)
i S 2n A PR B 2 A AL BE ER JF AT TAR, MAEE it S d, Rl — RSl 7T 58 B, tnE 2(c)
B,

Ak, B iR R T A KA B AT B TR T E R A A AT AR e, T
S Z MBS . N T YRR T A PTTE 1) Hilbert 75 (B A MEA 1 IEAZ H— 1, X & F AT
P57 U RONE 8 L IE (unitary) 4565, Bl UUT = 1, b THRAIRE, U N URIILYIR B
B, PR AT, Bl Uy) = |@), Ullp) = |¢), HtbEF@HE T B A, AT
HAST URBRKE TEEITROVE IS, B S2L 4T U RS E 7 Z8 T SO0
AR FEZ WA ENL, <5 B TSR A R, & TR TR AT .

B ENL A AR W E 1(b) Fs, i AR R T R YOE, AN E S AN E
PG AR e Ko B PR B S o 6 R B R A N U B T I R IR, WA S A — RAE 711 #
JEREE L, b U, i=1,2,-- kK NERSR, RELdSEHNEREESR. T2 T ER
D& 5 R ME AR, 75 2 E T SN 2 S AT BT R R L 4 2R

BRSNS T B EWA EE S BN E T ARSI THHE T RS
B HAh B 7RG HAT 9, X HMR R I T I R A AR T R B R E )l T =
T AL MEY AP E AR RS, BNy 7451 . MUK E T M T (Buluta & Nori
2009, Cirac & Zoller 2012, Georgescu et al. 2014, McArdle et al. 2020, Daley et al. 2022, Shao
et al. 2024). #7 &7 HHE 5 R E RS HE O &Rh — R R E B TR, B st E T E
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L
ERROCE R S MORLRL S W Beit DA i D) i R GE AL S ) B (Bernstein & Lange 2017,
Louie et al. 2021, Santagati et al. 2024, Babbush et al. 2023). BAT &, Bl 5H FE8 FiHHE®
A AN [ 1 R R SRR, B3R R F AR A T 0 D B AR A G T B TE R A PR )

LAk, — SRR E ) ) R B SRR R a0 K T
Shor % 7% (Shor 1994, 1997). R 3 R £ H ¥) Grover Hi% (Grover 1996, Bennett et al. 1997).
KRG T FEA P — R Y5 L (Harrow et al. 2009, Childs et al. 2018, Low & Chuang 2019,
Gilyén et al. 2019, Subasi et al. 2019, Lin & Tong 2020, An & Lin 2022, Costa et al. 2022, Willi-
ams et al. 2024) P & TG 45 14 ¥ & 73 & /7 7% (Aharonov et al. 1993, Kempe 2003) %5, iX L& 57
V2R AR 5T % B IS T R B R 22 B AR B ORI R . R, H AT R T TR AL
Kb T A g 7 S FIAR (noisy intermediate-scale quantum, NISQ) B Bt (Bharti et al. 2022), it A &
PAE — N SEME R T B s 47 U BB 7 RE RS 2 R R FE M 45 1. & Nk i 72,
H A NISQ B A4 &1 X6 — Sk g & AL 1) @, 1 40 Gauss—Bose SKAE . BEMLZR B K AE . BENL &
T EFALS, CHEEMIFFRERE 7 I#E M (Arute et al. 2019, Zhong et al. 2020, Wu
et al. 2021, Zhong et al. 2021, Hangleiter & Eisert 2023). {5 H1 T H & & 1 15 44 F1 502 (1 R Rl bR
fil, MAERET EN LRy R A SSHMERNE T (Daley et al. 2022, Kim et al. 2023,
Hibat-Allah et al. 2024, Begusic¢ et al. 2024).

1.2 RENFEFITERBE

B8 7 FBOR N T AE 775, 5 2 g B b g HL B R 0 UL 1) R (Feyn-
man et al. 2015), A HE LA T 2248 KB B0 T X, K A BT A AR B S R T I
RIOC %, R TR N b s D e 7 e B o b 50 2 2 YA o0 1) R A v RO A TR I, R RE
NE TR A — R ER SRR B SEBE T U R S G], TEHEPIAS ER 2
M 5K E.

522 3 CFD A2 AL, K7 QCFD B n] KB A aTAb B2 . SRAEES . 5 b3 =35
£ QCFD i 4bPh, F ZA 715 B 9 i R m 26 & O 8 72, Wl 3 s, K pr
AR RO B U SO R SR AR R D5 R . Rk U R 2 S M ) 3 3 e R BTt
SEHL T BT 48 A 0 LT B R AR, R RE AT AR 5 kA5 12 (0)®n, Bl A A &
[1,0,0,---,0]". 9 VR XA TR AR S 45 8 W6 F AR B RO HI 2, 7 25 A B A 1 32 # 0
I RN R T TTHEAT AR SR, F AT ST R 0 AR S B A N ) R T AR E RIS
I H & 0 B 2n L WIS SRRk DLRORE FE 1/ BN BB A% B2 (Shao 2018), 3 8 ) ] & —
A n B HURR ) AS B I TR) 52 % BE VeI O(2n) L 3K — W02 ) 4% e REAT B A R OK A B BT BE LA G
#% (quantum random access memory, QRAM) (Giovannetti et al. 2008) 7 AR 45 FI| fif 1.

£ QCFD HyJ5 KM, B T8 7 0 5 WA B 2o MR 1Y, R AR 2 M iRt 44 70 22 T R 2L 1) I [
AL A N B TS FE R Z — DN E R (Tennie et al. 2025). b 1 &7 W& #ME, &1
FHIAIE L AT E AL R LUE N — R E ] (B TR RS RIE Y
o 30 3 U R BRI G i s, D P A TR R PR S R 20 B DK /N B B B IR M 2 0, D AN T B
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- bt @D @ @
- ! Chinary(qy,"q29;) 5
__ q1, g2, ';}n =0 ]@ﬂqﬁ
- —

3

RN EFUEAHNETERN. AT EERBAETE, HEZETFTUWAH LT ELE N £ TR
G RRE M EARITHE, £ QCFD & s By 4 A 2 —

i (Wootters & Zurek 1982) £ 1148 F i Lo 4fz i (1) I I @ A, 5 3088 40 o B AR MR A & 71 55
MU AS B8 38 Ik A7 6 e B B AR o = w R ux o/ 5. W, BT E 7AW — R
P A AR AR /N T L(BR AR — AR RIE, HAEDON 1), TRtz B s, B 7850 e
WARANT 1, RE T, BIAH BB SR AT RE 2 B . Be4h, BT AR 7 R IE &
TER G HGe — AL, TERIEARMES I IEAC . &5, BN E SR ah B A R EFE L, i
(A8 A S5 7l 2 JE TS 1) (Ashida et al. 2021), DA I % 75 2 5] N 4B &4 /& Hilbert 23 [A], A
T K A 7 S A7 WL N P9 545 (Schlimgen et al. 2021, Jin et al. 2023b).

76 b P AR 2 Ve 1) U, — Se R o 2 K 2 T A AL R AR ok & 7 500, W0 Carleman 45 PE AL
(Liu et al. 2021, Sanavio et al. 2024). ¥ #: 4 Fokker-Planck 75 #2 (Tennie & Magri 2024).
Koopman—von Neumann 77 #£ (Joseph 2020, Jin et al. 2023c) #1 Liouville 77 #£ (Jin et al. 2023c,
Succi et al. 2024) 5. SR, XKLL kAL 7 12 75 B IR iv) jEUGEAT TH4EAC B, H R A 7148 )5 4
Fe Ji R R B2 1) 22 N, B SRR A RE SE T RAOINE X 1 0 T 6 BT AR R T R 85 AR
PERE O, XF T oR AR 2 MR R 48, SRR RITVERA BRI, M ASEBlA 2 & 7 Ik (Jin &
Liu 2024, Lewis et al. 2024, Briistle & Wiebe 2024).

7£ QCFD [ 5 b B b, R % T . E MR E S5 B i £ & 1 rh HEq] ok
M G A S O A E AR, T E T R gt B REE. FRNER, B8
2 4 B I 2= AT I — AN AR, PR R O B 2 5 0 R A A A A AR,
DEFAITHNENE TS fEEdSG N ERENETRSELR, FITEENE 782
Br, BII & A Pauli 7457 & (H Pauli HAF 1, X, Y, ZHRHFH) FEME. Bk, X T A8
T HORE, DU R s O(3™) . AR, AR SE BRI BN 1) R, JRATTHE B AN BT B A AL
PIEER IS B, TR N KL — G5, WK YL ). Bk, KRG LENETE
S BT A A i i B AR R D BRI & A, W] AR B N BT A AT AL B, 4l vt RS
TP AL e, K FR B R gt E R B DU LA R 7 EURr L, AT BLSEAR B B AR 1247 1 U 2

Zi LRTiR, QCFD 2 [R] i o A0 A 4% . &7 A AL A& I = K A% Pkl I ) 35 il 4%
RS 8 AR X i LRI R, T [ AR MR AA D) 7 R RO B T A AL
LN 2 QCFD (e AE @ e Ah, RS I &0 2 B 1ok 55 b i — ANl 1) @, e 28R R A
G vk & 7 R R RE 75 45 A A 1 AR,
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2 RENEZNETFEEHRR

BE A B R (0 s A, 3T T U AR SR Bt 22 MR DLIAL A4 G2 3 ) B 1 5%, QCFD W
L7 MM I8 1 4 (Bharadwaj & Sreenivasan 2020, Meng & Yang 2023, Succi et al. 2023, Bharad-
waj & Sreenivasan 2024b, Tennie et al. 2025). 31T QCFD 5Lk = E A NH KK —BRE -4 H1
WA, b & A ot L& 8RR T EAR S TR B WU R, R R
FSE e B R R, X R EE R T R R S R W E 4, T SORE ] ZE A e AT AN A
Wt e 3k .

2.1 EF-ZHBEAAE
2.1.1 EFEKEFEKESS

N 1.2 W prid, QCFD 1 A5 5 3R 2o AT AR 29 P40 5¢ B Bk dl, in 2 NISQ I AAE 14 ) & 1
LL IR LI BR 1, (43 QCFD H K 2 BINA W S AR 7 & T -2 R & Tk, EHEETET,
B IFENL A STHIAT IR O w0 T RE R BT ST, Ho AL 8 45 22 Bk BB, S8 R AN &
HHE T HIEAA PR AR

R T-2 WG EEN—ADRERE B R ENE T RIERGE T8 [o) BN —h
BB T2 (o), FEENE 1) AT AT E O . 285 A 2 LB ARG Oy tH Rl Oy, Horbil H
WRARZ BARLEIZ S, JF O REMF M E T [vo) . EAFERAENT — W RP M6 25
|tho) , LMEHEAT T — I (8] 20 A B8 7 &AL 3T o DM ET R, WE T3 [v)) BITTWNE O 1
FeHd 2 e TNE. FOVE TS IEERMM, LAT2 UUEAT [¢1) B & L, HlE R 5
FEOR OB™). Ji—J5 i, WAl W& Oy BT T35 [vo) ¥ R BIE 1.2 % ik (47 4h 45 ] 46 1 7
TEBRIIR S KRG ) & B2 9 O(27) . itk BN (a0 N 2 7 15 20 S 22 1) 1 52 36 3 25 1
mT B T2 MR ESIERTE IR, 7 H TR A BOR AT T RE S BN A R A
g (Aaronson 2015).

— AN )R -2 R A A RN R T A T R A R AR 4 AR AR A% 4E ) CFD S
(Chen et al. 2022, Lapworth 2022, Liu et al. 2023, Bharadwaj & Sreenivasan 2023, Ye et al. 2024,
Chen et al. 2024, Bharadwaj & Sreenivasan 2024a), H i 5 A2 B W& 4(a). &% 5 ER 0 B8
A& H) =5 R T SRR R R AR A B 4 1 TT FE A, 40 Harrow—Hassidim—Lloyd (HHL) 5%
(Harrow et al. 2009). P 4F B £k 1 41 & (LCU) (Childs et al. 2018). & F & F A # (Gilyén
et al. 2019). FEHL /7% (Subast et al. 2019). EfXiE (Williams et al. 2024) P J & 1 48 #4057 1%
(Low & Chuang 2019, Lin & Tong 2020, An & Lin 2022, Costa et al. 2022) %. B 5 45 1 7 4 #7
7O R I HHL 5005 & 1 28 2%

Hil B E &N EE 7484 57 (Costa et al. 2022) 115 & 44 B #4587 3
O(log(N)rlog(1/e)), Herht NONFERE R/ e NIRZE . w AFEFESF AR XL T 2R MR MR 4% 551k
PE ST RN B CFD S35 1 At A 4 1 15 A7 R RO 2L 28 A =l 5% 4k 471 1) & 10 o B3 I 475 7
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a 2 LA b
i)
BTEEN I (@
5| mHwma R | (g W |
X o — g
BE B TR S 3
RipHSH *®

sl & LTS

4
FT-LHRAEE D FAENE AT EREEA . () AR ET AR R B RN ET -2 HR
SIS . S B AL, A S B A T R A R R R kA R, 4
RETHAERTAMRAMENSK. MERANAHNE, FANETARRBERBEN TR
W, BB — . AT A BRI R R AE SR AL T
HAWEELE REHASFEAR —FRDE, £ WA REAEEE 2B T I
. (b) T NS M B ETRF, R A FENE A REN S EHE LT (Meng &
Yang 2024b). 4 8 T § 5l &, a9 8 % 8 07 R AT B LR A, T2 3 SR DR R
B E T

LT EHL EAT . 53— MO 7 VR R K SR R T BRI B T A RN AR Si ) CFD Bk
(Steijl & Barakos 2018), [R5 T i 55 ob A JE 2 11 45 1t 75 A2 22 T H S AL B AT

SR, DA b B S J7 R SR A 500 — MRS TR AR IR B B it /= 2, W RR il A B & Pt VLA R
SEHL. AN, AE NISQ W AR AT T 48 7 & 1 HE SR AR M 7 PR 4 U PRAR & T A BRI L (Xu et al.
2021). H TS FE T AL JATFNL BB, X2 — MR T AN & -2 R & FI%.
2.1.2 ETHRPHRTE

$r 4% B H im 77 7% (Lagrangian vortex method, LVM) & — 238 i 18 5 38 7~ i 18 & 1 B #iUR 7,
B AR 12 B B 777, ©F 2 M T2 A8 15 WV LR A A g AL 25 4 (Cottet &
Koumoutsakos 2000, Liu et al. 2017). & LVM 75 4 B & 24 12 5 4% 1 Ao 3F 2% 4 9 5 77 1 38 9
B, HER T BB S EREETEER HTETFS5 LVM B R ELREES
Berry AH A7 [ B& A2 4 M 14 HE AT FE EHE (Thouless et al. 1993), # LVM ¥ & 7 515 A 2 KR B 1R =R
TR 5 AL T SRR

EEFIRITES, VAT & HENG EEE R IRIGR M B, PR RS NE TS, %
) ] RIR N, fE— R E oM —DRESH h>0, FHR AR (Z4EE N RN)
FoRNMEEN h/(2m) BIIRLZ, FIEBRRREY w=V x u. WeiBmann 55 (2014) $2 il it 5§
B ¢ K FHERFE IR 22 i £, BB SR AE Re(y) = 0N Tm(y) = 0 S8BT ) 22 £ (AN 6 i
TN, B iR 22 A B i) 2 A 45 Ry g AR ) R Hﬁl\glwlﬁ'w’ KEMEST ARG e EEfE. HER
T35 SR A2 e A Te) U A FE IS, TR SO T g O AR A T ORI RE R R R T R %R
T A 1] R A 2 B A P A ok SE IR T3 ) B 2, RIDRE |) = U(0)[0)0™ s A — A8 T
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& s

KGN TR Az=bWHILEF W ETF L. A B EFHFR 0 FH L7 6 E b
A, REFAAEFHAMMHEITFE4EE AFMEEN 36 & r, WA N |0) 5By & F th 45 6 n
ZERE MEHATETHAGUTNRESRE, REXHDETFHEHTETNE. FMELR
K, NEFFHFEFREDNET - EEE o). Wi, — & HHL & % 38 5 3% 77 DA ZOF A
WM ETHAENELE RN 0)BETHFHF N EE (Babukhin 2023, Tsemo et al. 2024), M T
R Z L ETAE

E 6

MNEBB Gy ELETPRPBFL. LEH T ECH B HNEEE Re() =0, LEHEE HE N
ST Im(y) =0, H 6 # 4 4 Re(v) =04 Im(yp) = 0 By X &

SHAEE T UO) 1ETE n LRI RS b, Jorb 0 S 8 & X R R B4 ) B 46 D & 5
INFFAEAR 1] 8 ming (O|UT(0) HU (6)|0) , I 38 i A8 43 & T HFAiE 3R A 2% 3L 175K 2 (Cerezo et al. 2021,
Tilly et al. 2022).

XF T 5 2R IR e AL R, 22 80 LVM i 7oA BLAE I oF 5 2 B B 2 0 oo R T D 2 R
K. 58T LVM % 58 2R 018 3 I AR R RRAE, T LG IR 7o 0] B2 1 & 7 A AT & ML
AL, AT SE BRI [ 25 HE i, %A AR B 25 S 43 fif ¥ AR 28 8L (Schmid 2010). H #7 24 #F 78 2%
PO B 7 S 5N T & Bk A (Tshida et al. 2022, Xiong et al. 2021), H& ¥ LVM 7£
Sefr B A T — 2 51 QCFD A B3 R HE AR, 50002 LVM Be iR 4k 7 RAE A ARGESE 1, {E A
BT A P AR X e A {5 AT TR B T

2.2 BEWFRYUTE

T2 RS FIRW RO T 5 2 MR (8] A B 5 e, HLIX e AR BRI ]
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A2 NPT 85 B TR A A 2 o SR T R AR B B T SRR I, S BURE S T S AR S LA RO (Aaron-
son 2015). Rl Jy i G A8 & 7 iF 55 b AUSEI B A A 2%, JT Ao B i) QCFD B B3 I0 N
HE. i TR TIFENRE TR T R EIEAT, NE TSR MEEE 5 018, H SRS i
WUITVELE QCFD H E 56 75 8 i U4 1) 3 % 4 e e i 75 T RE I X (Meeng & Yang 2023)

0 A
ihocl) = H1o) 3)

A, i=v=T, ) N E A — K RRE W&, 7oy 5. R AE AR B AL B FF
U = et P 504 I 5 0B T L R TR, B AT = X R SRR bR A2 i ]
Aok B e W E MR K E T RS, REAEE TR R E 7RI A S RS
(Lu & Yang 2024, Brearley & Laizet 2024, Sato et al. 2024).

2.2.1 —REH RS FRENEEEK

Xt PR e A Al Bl 2> 75 RE A 1) B IR, T AR ek W o T R A

du
— =A b 4
ar At (

b, w AR ARSI m B, A N RECERE, b AT X F 1) & SR, B A (8] J7 1) 3E 4T g
ARSI E N I N RGN S EE, RS EARAREEH—1, XN T RAEN R
P EGFEBOR S, WE 7 s, Bk, S B0 E AT A R R K R, xR A 7 I AR AT
XALAF Tk B AL & 1 vH S AT i S5 OB 77 2 SR 1% 2 B O R R AT IR A) AR

— B I i R T v SR S UK A AR IS TR) 7 1) B R, A3 3 wf Tt = Fuf, Hod i ROR I
—WZ. X FEEETFF SIAN—ANHBE FLfr, @id gty (Low & Chuang 2017, Low &
Chuang 2019) B (Brearley & Laizet 2024) [ 77 xS B % B 5425 b B) HE3F 1) 79 58+ (HAE &
AN AL I 8] 25 e #4800 250000 B i R 1 LR 18 L 3P 4 21 (0) 25 LAAS BN Z0 B8 o) . BRI, 3R
BATHE R TEMMER 12050 [FEF, B 12D K At 52 BRF 5 2R % = Fa e v R, BTl
G AT BB T2 IO NE 2 B v S TR) 3G I B8 Bom . B B, 207 VAN S K TR] AL

B HTAA PR 77 v o] DU M iz ) . — 2 ad ol 5 N AR B AR & i < e i AR e (Jin
et al. 2023b, Jin et al. 2024a), £ b 5 1) 3 5 — 4 1K) 725 1) Hhoke 2 10 i 1l o 07 75 20 3 8 9 B e 15 7
R . ARG, B L R G 3 A 40 ok SR AR AH L B S 15 07 RR, I R VR L HH R A6 O R ) AL X
PG ER LR T BB E TR, b LR TS El T & 78 (qumodes) LI (Jin
et al. 2024b). B T A E Wk, AR & FREEICRAE 7 SR AR iz (Lu & Yang
2024). Maxwell 5 F£ (Jin et al. 2023a) LA f& Fokker-Planck /5 #£ (Jin et al. 2024b) S5 4F & [ &,
A E 19 B R i — M I i 2> 7 AR 2 7 22 (Hu et al. 2024) DAJCERBTHE R iR 26 14 75
Y RN (Liao 2024). — &K 3E JE K 57730 i O Je K38 73 A JE K B 43, 7T RURE SR A3k
P4 (1 I B 35 A0 BT R A N — RV I BT AE 1 2 (R R AR 20 T 2 (SE B S F o 75 S A SR ATTE L),
B E B RF 2R 20 A 7772 (An et al. 2023, Over et al. 2024, Novikau & Joseph 2025). % J7 % & #
E W] B AT S ) 3 1) 4 2R

~—
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& 7

“BEBAMTHRBAEEREAULAL T AN TER. —MABREM> 7B, BEXTZTE F @ 5HoD
BELEFERESTEN_REANRAANTFEE, IRAMEFARRF A, ¥ TRALEN
FEAGREEFRBERINL, ABE AL TEENEAELS. BLINFH T E (0H EF
A A), AEPHE AN ERC VAR FHEE A AT EE ATTREZHFHEELR
BE N THESHFHEER

2.2.2 Navier-Stokes A M EFRT

X ¥ 7% MR G — BEIR 3, W {E Navier—Stokes (NS) J5 72 5 Schrodinger—Pauli (SP) 722
() 42 SEH W g, BIE T NS J7 R T IR B AR R VR AR 1B 3, B SR R IR R iR R
(Meng & Yang 2023, Meng & Yang 2024b). a1 8 Frax, xf T~ M ] 5 2 5 4 (R 3h, Wik sh 1+
T3 RE ) 7 2 BT MR ISE B AL AL S W LSRRG PR UL X T NS 5 RE R R R R, AR AR
LMt SP T REH IR 1 B 1/2 KT HYIZ B, W2 B pR Ho ) m kL IR A, ORI AR e oK R
BT NREPEFERL (Salasnich et al. 2024). % . W 452 s LY AT 22 6 2 560l U BR B A
PR, AR 22 SRR AR IZ SO — MR IR IR K B T B AR G, NS T e 5 SP U7 R Z 1] )
WS IE B 1 B AR AU AR B S AR 1) R A P AT, LT SRR G B 4(b) P,

SR, ZE R TR BAH — MR IR, X T AAEREE dsTEH G R  E Y, W RE
TER B — A3 6 I R A (Meng & Yang 2024a), B SP 75 F2 (4] 46 5 #F & NS 77 FE 1 —
AT EE AR TR R G E W B2 g, AT DUE i HE DR A T 9 R 3R A B R B AL A (Chern
et al. 2017, Su et al. 2024). B4k, H e fE 7 5 WUR 1 3R L8 PR AR JE KR PR A8 45 BT A 59 20
=T HIECON kL. P IR & H 3 (Lloyd et al. 2020, GroBardt 2024, Briistle & Wiebe
2024, Esmaeilifar et al. 2024) 7€ — @R E B 7 AELMER B &, rlaEd R o M E =TSR
F8 UL IR) B0 PR AR B A SR A ALl B0 A B 7 S AR VR T AL . 59 — M5 ik 2 S I AL, B AE
AT AR AR LM S e B v B 7 2 R R G0 MR AR AR . O T i 8 R i AR e oK B oy
H T ERRIEKK (Ashida et al. 2021), A1 @ 5] AN A B AR B AE R T TR & 7 1H L L S2 Il &
PR, B NRKRE TR MR TEIENRESHERK I (Zylberman et al. 2022).
E— 5 M, I Z A b & 7R R 1 F 4R, Meng 55 (2024) 76 24 /7 NISQ KR 19 5 & 1 1t
SN L ST o ) ) 4R AR AR AV A B R, A OC A AEAE 3.2 TR,

2.2.3 EFERFHEREZESFE

¥ F B% /R %% = 7735 (lattice Bolzmann method, LBM) f& — Fft 3 ki F {0 1F S A 1 2% 07 1%,
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R
=
#A Navier-Stokesifi
W&

DR AL
B SE TSI

NN — AN R B )
[
BN RR A | K53 B PR A

TN HE B i

PN i

TeFhL 5l

& 8
MNERB BRI RES A F T RN ETFTETEHATENE (Meng & Yang 2024b)

B T B R ARADURL o0 AT BRI AL, R DU RO B AR 12 B, R R A
59 10 FA AR UL R AW R BE B R B I AR JE I T Y 3 AR g, LBM ] DLAE & 22 AR R &
A H NS HFE.

LBM & — JE Ui 1 (1) i 25 i R, T G v SR A A 26 1 lf i A AE PR, X R R T R
TRV SR ) L DU LBM A R AP 4y — & H Carleman 28144k
S 77 WK LBM J7 12 % 4 Oy B i 4 B K H G J7 AR 4L (Ttani & Succi 2022, Sanavio et al.
2024b, Kumar & Frankel 2024, Itani et al. 2024), {H X} T~ 58 JE 28 14 i 2h #E DL S2 LA 28 & 5 .
TR LR IR AE LS BV BN, 51 G0 B G R AR, AT DA R Al e ks e R B —
LRVET, AR b SR R — AN A B A R 5 A2 (Budinski 2021, Budinski 2022, Kumar & Frankel
2025, Wawrzyniak et al. 2025).

TSI B T R R e TR, — S A ST T 46 55T LBM W AT & ——4% TR B S L
(lattice gas automata, LGA) #4. 7F LGA B ARSI N AZ7E T 4% B 10— R 51 B Hokz
T, TR 7o L [ A2 PR IS R] 1] R A 2 A T IR I A% B B AH AR Y R ORL 2 1) 1R Al e e —
B E B AT /R IZ HE AR, 3 e ) S e R AA ) AR ) B AR, G0 B BN RE R ST E. AE — 8 kA
T, LGA B AT LA S Y NS 52 (Frisch et al. 1986). BT Ai Rz H A gl & 78 415k
W, Kk LGA t LBM 3 5 S2 U & 1 5% (Zamora et al. 2025, Singh et al. 2024, Kocherla et al.
2024, Wang et al. 2025).

2.24 EFIRANFZE

BTEAE M5 ETFERBEEANEKETIHEMA (Das & Chakrabarti 2008). ‘& i i #4
PLE T R G 0R KRR, R FH & 7 0% 2 2000 Sk 38 AR A ), DL 4K 0] 1) 4 R e A A 55 3 A
fift. B 1B KOS A AR R 2 A LA 1) A 8 QR AT R e RN PRI € 1) X R ) AR AR O
WA LU S . B IR KEEEE AL HNE FIB AN Ligfr, (BB UIER TR F2HE
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12 2% 1) I8 A & 7 i EAL B 3EAT B (Barends et al. 2016).
16N 2 718 K VLT, 7B SR AL N IR B2 R AE AR AL 7 # (B Tsing BEAY), B ng
2R ) B/ A ]

argminH = arg min (Z Jijoioj + Z hjaj) (5)
7 7 irj j

A, o ==£1, J R ARG RE, B ASMEEY. B0, 0T il S 75 R 21 il 8, s % i
H = || Az —b[j3, W24 HAL Y Az = b, W% 005 D MEA 0, K2 i 0 Ak 0] @it 56 4 T i 2
PEJTFEA (Borle & Lomonaco 2022). H A A7 2> B 70R IAR AL 1] B, 4140 NS 7572 (Rodriguez
et al. 2024). LGA (Kuya et al. 2024) Fl1Zh &L ZS 70 fi# (Asztalos et al. 2024), #F AL AEH T &
1B K [ Tsing B840 21118 K V.

2.3 EFHNRES

PUEs 52 >0 Ca )2 F T i 0 A L 2 6 50 00 Al B A B L AL VR A A S IR AR 0 A O O
(Brunton et al. 2020). fE L8 % 2 5 &8 iR A8 XUR, &7 L85 gkl 5] 7 oRE K
¥ (Biamonte et al. 2017). B TR FE — 38 75 A & T H AL B 58 B, 0 H AT B R & 40 & 7L
wE R E T E T2 MR G B By IR X BT R, AT L S
Ao 2 A R A M AL B T RO, SR T E AR M R AT DU ORI RS s
2 MU X B 59%: (Cerezo et al. 2022, Xu et al. 2024, Kuang et al. 2025). &%} £ 8 R G 5 ds, &
S HE TR A 2 W 2 T Gt e AL B AR B B T S ROVE AR AR g S Y Il S 6 56k I s 3|
ZRIE 7. #E QCFD H, X $e 8 ML & 5 2 J7 R mT T 5 A% 0 4 00 @ AN T, 2 van 50 A A5 40

B MAME (Gupta & Zia 2001) 52 & T HLE 5 ST 0 FRITEZ —, ©#H T RAR o
TIREWIR A (Yadav 2023), 7E B0 b B AT POE IFAT NG /). 0777 45 S se 5 kiR, K e
2R 5 T3 T O 0 7 R A B S R RN B e BRI B A S R R T A M 4 (Markidis 2022, Xiao
et al. 2024b). L], CH W BT & 7 F L IR EHE 7 W4 (Xiao et al. 2024a). & B2
HT (Jain et al. 2024) 553 T W& 2% 1 00 30 77 RE KMl 4%, 76— 4E Burgers 77 /%, “4E NS 75
P2 55 1) @b T e 1 B X 6 7 9 3 L R B B0 SRR N i 7, R R Bk — 2B N T ORI
PR = 2 It A ) S ) BB SR . B NISQ WA IR R SR, BT 28L& T4 1 & 7 & W
28 51208 U R B AL F R (Benedetti et al. 2019), B B T QCFD BIPIZ#] % L2 (Su et al.
2024), FF ]I B TR 55 1) £E — 58 F2 FE 8 5 “barren plateau” [7] @ (Grant et al. 2019).

BeAh, WA AR LS = I A CHIE TR It L. 20 K8 TSR E L (Bish-
was et al. 2020) L4 N H T ML 3 I 3 23 B8 K € RO BUM 23 251 17 /8 (Yuan et al. 2023); & T
K i 48 %% (Basheer et al. 2020) /£ 845 j5 /b BE P il S & TS E T S W &S 2, 7 ) b
QCFD H [ K A = 4E 504 (Sajjan et al. 2022); & F FE ALY (Asztalos et al. 2024) Fl & T fif
EiHHE (Mujal et al. 2021) ©H T Z 4R B (Pleffer et al. 2022, Pfeffer et al. 2023); 52 &
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T 2R EL R R, I B T R A AR 1) R I 3t AR 28 b i UL v SR S RUBE R AT g i, ISR FH AR O3 Bk
R f# (Gourianov et al. 2022, Fukagata 2022, Peddinti et al. 2024); LA & H 48 4y & 7 H 15 SR iR i
B AR S5 I 5 b (1 AR 2 14 A 13k 73 77 72 56 (Lubasch et al. 2020, Jaksch et al. 2023).

3 MENFEFIHENBEMHLINE

B ENURE AR E ST LR A T B ERE (Ladd et al. 2010), H AT S A 2 ik i 12
BETHENEAR LML, BB S (Kjaergaard et al. 2020). & TPk (Leibfried et al. 2003).
H 4% Ji T (Saffman et al. 2010). Y6 & T (Zhong et al. 2020). & T & (Loss & DiVincenzo
1998). %M 3LPR (Vandersypen & Chuang 2005). 4 Wi f1 f4.0» (Prawer & Greentree 2008) LA K
AN R (Nayak et al. 2008) 5. SR, & 1708 20 B2 AR AN I8 AH I (8] 46 47 /2 24 1 & F oF SRl 1
T I 1) P B ke, R AT B D O SR B L B S IE T AR 1 QCFD M4 (Meng et al.
2025). T 2 B A FE T B -4 IR & U7 V5 5 W S R 7 2 QCFD A4 sz 3 it &

3.1 EF-Z2HEERAZE

£ H Al NISQ B AR, &= F it BN & 7 HILRr B A IR, AERE =90 & 7 118 2 A
B, 294 1% (Cheng et al. 2023). X & bk 5 BIAE7E & 7 1108 505 e (R B0 4 b, 2R 8 1 i K TR
FE M BRBIZE — W B 2. Bk, B AT JCVETE &7 5L B SC LR 2 R0, JRIR1AH A & LI 45
T2 MLV G VR 10 2 VR B O 2 DRI ) 0 25 B 8 I img AR R, FL TR R 4 B L I
LA 3 1) is BAS B 48 v AL AT . R, W7 DA b B I R LU R A R E AR bR T
BN 5, (EhE -2 IR G IR MYIE iR,

KRG FIE M AL LI # 2 B T & T2k g #5 . % T HHL 5% (Harrow et al. 2009)
B R B AR, AN E B7E NISQ W% RIgAT, X K F 78 3 K A8 4 &7 VA M LCU 55
SR A 2% ME 5 FE 4 i B {51 40, Bharadwaj Al Sreenivasan (2024a) ff Fl LCU $.9%7E IBM (i &
BEFIEN L, A3 AN E T IRl T —4EXH R4 #UR & Chen 45 (2024) 7E AR I 5 & 7t
HALAER b, MRS BT RIE, 2 ~ 4 N8 RS T 4848 1] K46 1) Poiseuille Ji Al 2k
PEFE WA 1. B 9 JEon T IR AU TE S T RONL S0 p 45 3 10 S T S 48 B 5 R ek
BRI . M8 T R R R, B R ST 25 R S B V) & B Bk, BT
B i B 8L ) R 4% J2 3 5L, Pfeffer 25 (2022) FIl Pfeffer 25 (2023) 7€ IBM F#E S & 7t AL L O
M EE 7R T R T 4R BLS . Song %5 (2025) 7E IBM I #8 S & FitHHL L, bl
T T 6 R S i 5 B TN B, SR AR A B SR 4 BT ERARRE AL T 24 R0 NISQ W& BT
IR % S S R A A AR AN UL B0 1) R A ke ZE W, L4 SRR R H AT B ) AR RS A R SE LR
14k 75 78 11 J. 2 TR s A

HAl & 74 UR & SR BB Pt BN RS 0 T YRS IR R B, &
ORF R AR D BB T3k SR P 10 SR8 4 v AT 5547 H 8 ST S SE B, T LI I 9 9 R
B 524 % B B DTk H ), TR e DA = 8 SR AR T AR
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b X10—2
a E - } =
MO apiry O me=2 noong=3 Q%R0
\ 1
O wTith II ‘\ b 1.0r ,' A
’ v 1\ \
K ' : : oﬁf;b ]
3051 ' \ = B \ 3 ) - \A
’ \ 1 \ o5+ +~°° fiFtbT it 6
g ' ; i g ng=2 O;‘O
’ ‘\ N \ ] A ng=3 ‘\
’ \ J O n,=4 \
O'Q""O I Q Q-O_D-OI O-Q'Q O-|I q. Y
0 0.5 1.0 O 0.5 1.0 0 0.5 1.0
x/L z/L Y

9

HTEFLUKMBNET-ZRBLELNETFUHEEINERER. ) FA2M3INMNETFI
A — 43— w R, g5 2 T H 4 RIEAT At e (Bharadwaj & Sreenivasan 2024a);
(b) B 2~4 NETF AT T E S Poiseuille i (Chen et al. 2024).

3.2 MEWELTE

BT IS S R, o G R AR L R BT B TS R S S M R B, HEl kT
EITER R T 8 -2 HUR G HE M QCFD i H 3 2 1 &+ ke, SR, B & Bt &2 1 LU R 2K
30, A 1E & 7 EALSEIE A 1 n) @ —— PR SRkl TR e R I B R R A A, B4
PR B 1 B ARr 2 TA) T REEAT OUE 1 T 1434 (ESE PR & 1 i AL b & 1 Lo A I o 2 A A k1
B — A2 7 LR S WU AN AE AR 2 7 LURE A IE . it REE AL 7 & 7 HEX B TR T IE Y
AR A AT L (Nemkov et al. 2023), P& M H ff & 10 F b & R HEAR B 2544

E#E T B FIFH ML L, Meng 55 (2024) FIH 5 2.2.2 TTA AR NS FREE T HERRN, O
10 A& EU ARy DDA DL T P AN Z4EAERR ANV B W R AR 300 R A E TS R IR SRS R A AR
BEVLBHAERRE FIIHNE ] CZ Ak B 10 EBa T — M =4 iein 3 ek R s &
T, Kb —E Mg 0) &1 1T LLRPEAE. (B2, B8 7T IR 7 1A e [F
B, BABERII AR 2L A — & 1 LR I 2 AN XU 1 1], 2R 56 il , 38 Wl & o A7 & 7 EL AR DA
A5G Pauli 747 5 1 EE (B 11 Fras), AT E R AA I 2 B f 3 & 3.

B 12 78 T Meng 55 F] FH 8 3 & 1 1H AL b 1 me 2 US40 J7 v 06 T s 4 5 4 35 0m R B S
VIR AT SER I A5 R 2R T B E E W 7 sh E EZ AL AR, H BT NISQ ’ACVE
TP ENUAAAE B E MRS 85 B b o 2R AL T im Ik 7% 11 % %2 (Meng et al. 2024). K5l 52,
XM TV A R E VR LI I B BN ) 5 T R W Dy e 1t XUy B R E T T AR, DR AR B E T IR IR
R AL T AR IR Bl S R S 4, T E P EURR RIS — B, SR R R E ) E
FHRTRSEERNEE =B HiE R E 12(a) Fra & a0IR 51 (Meng et al. 2024). [ i,
1A TP R B RT R AR T TR K, W R T RS4R3, A Lindblad U7
RAZAL B AL S (Liu et al. 2024), LA H 5 im I 19 BE HLGo 77 PR B AH IR &R (Pope 2011),
AT ) B e S R AR L R N RZ dg 8l DL RS A RIS )75 45 & (Han & Yang
2025).
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EH: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Q1:/0) G0 U} U=
Q2:10) O O——O O——a UH——H{T—+HUHR
Qs:]0) O——{T-——0 G0 {U——{Ur—4—T+
Qu:(0) {U——U} U} U} U-=
Qs5:(0) {Ur——{U——T} (Ur——{U} (Ur——{U} (U——U} =
Qc:/0) U} U-——U U} U} U0+
Q7:(0) {UH——TrH——T) O-——T T U} U} U=
Qs:[0) U-——{0 (U} U——U——U-R
Qo:[0) O U} U} U=
Q10:|0) {U——{U——T) U——U——U T——0 {U) A
& 10

MBEZRRFERE ERBH > EN 10 ETFHFELE Menget al. 2024), G FEHEBEREFITU
FREFITCZ NEA|0)COF 4 Bt 23 ERFHE (R) EFITHE, TUFREERETA.
FEBEEE A 3040) M, REAHE A SIO/H, AR TETFLENEG. A ZRE, &
MEFFETFHRHUENREKNZEG G EY

1.0

I M mw o w

g
15

i
e
=
@]

B

TN e

TR RS Y B B AT 44 A T Pauli F AT B 88 2 (Meng et al. 2024). 3% 4 5t E B 7 HE 7
Lo TR (G8). CPFlow 3L (1 €) An 28 (&) 4 B 8 ar 20 A Pauli 7 4F & 6y 241 2 1.
IRHENRZBEREXIONMEZ, B THENLEFFRE - Pauli 7/ E, BENETF I
FEARAE XL By Pauli H A4 #EAT €

SR A, A b B Fe th R P G R UL 9 A B L L HEAT SE R, A0 Wright 4§ (2024) £
AT Quantinuum 24 7] 6 A&7 WAL — 4R sl Jr e SR, I R L VA R A T I R T
FERE B AR A IR, BRI R RS H &R TEWE. X THEH&, T8 TLRE
BRI R RIS B ST E N & it | A et E R EUEE, DUERE B 5 2/ B by
b, IR T R T R
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a AT IRAEHT 4 b R AE P I
0 p/%o 4 0 |J|/%0 4

t=m/2

12

EHRFETFIEN X TAEHENE L84 R (Meng et al. 2024). H & (a) 7 [E % # 9 % i,
b)EEERT. BEFANLEET 2 ht=0F 2B HZANNEER CFEEF (), s &
I (%) fmEY (), HFHEFTLHTETRE

4 REERE

ASCEH MR T BT R R, R 7R ) S A o A kAR, gk A
W7 R T I AL R SO . H AT QCFD X B 705 [ H RS AR T SRR B, RS
925773 T TR e = DR M AL e vt ORS00 B 1 A . BRIk S AR P I TR AL L TR
SR G R. RFAR BT 0 5 AF L AR U A 0 S TR R AR, H R A R BT SRR s AR L T
LI A S B NS BE 7. BUAT 1B 1 SRk 3 B v A SRR e P ) AR 55 S R A R
TRAR Ty 5 A KR 1) FEUON AR LA, WUR B2 K & T QCFD I (8] 388 46— e AR 2k 1k 1] ALY
ol RO T SR SR T T 1A

£ QCFD BEAFJ5 1, H AT & R R B 2k 10 & 7 1 55 5 R RE % 38 2 1 S AR SR A T8 R R 2
1073, Gk T A M HEALA R A AL, S M SLAE ORISR R AR AR b R T 2 A
AR HL I DR T S A5 R BOR B A R SRR B IS AT BRI, b B SREL S PR R A AR
B AR M 75 DAJR D B R 3, R SEBLE 7 2N B /B IR R R S5 (Terhal 2015), 52 SKHLR R & 1 20 BRI
B 8. R, B & 7 TH SR AL b 1 BRI A7 i (45 B b TR T RTR A i 18] AR
R) MR, R Al R AL T R T E AL, BT ERR I IE OO LA R, IR T SE
LR B VR . PRI, OROR 7 BB TR LR RO AR E AT g R A, DA R T S R 8 Ab B B
2% B0 BEVE RV A (1 B £ . AN, B U BEAL O A B SRR AT e 2 e I K AR it fik
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Abstract We review progress and challenges in the emerging field of quantum computing for fluid
dynamics (QCFD). Quantum computing, a potentially disruptive technology, is expected to tackle
pressing problems in the real world. Fluid dynamics, a complex problem in classical physics and engin-
eering, can serve as an example to demonstrate quantum utility and advantage. Conversely, quantum
computing can introduce new paradigms in fluid dynamics research. In this review, we first introduce
quantum computing features, such as superposition and entanglement, and highlight the challenges of
QCFD in initial state preparation, quantum state evolution, and measurement. We then focus on hy-
brid quantum-classical algorithms and Hamiltonian simulation for fluid dynamics, reviewing their
hardware implementation on current quantum computers. In conclusion, QCFD is in its infancy, fa-
cing both challenges in quantum devices and algorithms. Although quantum computing has not yet
shown an advantage in simulating strongly nonlinear fluid dynamics over classical methods, recent

progress suggests its potential in enhancing simulations of complex flows, including turbulence.

Keywords fluid mechanics, quantum computing, turbulence, vortex dynamics, computational fluid

dynamics
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