
流体力学量子计算研究进展

孟昭远，卢  臻，熊诗颖，赵耀民，杨  越

Advances in quantum computing for fluid dynamics
MENG Zhaoyuan, LU Zhen, XIONG Shiying, ZHAO Yaomin, and YANG Yue

在线阅读 View online: https://doi.org/10.6052/1000-0992-24-041

您可能感兴趣的其他文章

Articles you may be interested in

导航波流体力学*

Pilot-wave hydrodynamics*

力学进展. 2021, 51(1): 155-177

工程科学的践行者————纪念童秉纲院士

Tong Binggang: A pioneer in the practice of engineering science

力学进展. 2021, 51(1): 145-154

高阶矩湍流模型研究进展及挑战

Progresses and challenges of high-order-moment turbulence closure

力学进展. 2021, 51(1): 29-61

连续介质分析动力学及其应用

Analytical dynamics of continuous medium and its application

力学进展. 2019, 49(1): 201908

磁流体动力学在航空工程中的应用与展望

Applications and prospects of magnetohydrodynamics in aeronautical engineering

力学进展. 2017, 47(1): 452-502

海洋柔性结构涡激振动的流固耦合机理和响应

Review on fluid-solid coupling and dynamic response of vortex-induced vibration of slender ocean cylinders

力学进展. 2017, 47(1): 25-91

关注微信公众号，获得更多资讯信息

https://lxjz.cstam.org.cn/cn/article/doi/10.6052/1000-0992-24-041
https://lxjz.cstam.org.cn/cn/article/doi/10.6052/1000-0992-21-011
https://lxjz.cstam.org.cn/cn/article/doi/10.6052/1000-0992-21-004
https://lxjz.cstam.org.cn/cn/article/doi/10.6052/1000-0992-20-029
https://lxjz.cstam.org.cn/cn/article/doi/10.6052/1000-0992-17-019
https://lxjz.cstam.org.cn/cn/article/doi/10.6052/1000-0992-16-036
https://lxjz.cstam.org.cn/cn/article/doi/10.6052/1000-0992-16-005


流体力学量子计算研究进展

孟昭远 1　卢　臻 1　熊诗颖 2　赵耀民 1,3　杨　越 1,3,*

1 北京大学力学与工程科学学院, 湍流与复杂系统全国重点实验室, 北京 100871
2 浙江大学航空航天学院工程力学系, 杭州 310027
3 北京大学应用物理与技术研究中心, 北京 100871

摘    要  本文综述流体力学量子计算这一前沿交叉研究领域的进展与挑战. 作为潜在的颠覆

性技术, 量子计算预期在未来能够解决部分现实世界中的难题. 流体力学是经典物理与工程

应用中极具挑战的问题, 可作为展示量子计算实用性与优越性的范例, 同时量子计算也可为

流体力学带来新的研究范式. 本文首先阐述量子计算在量子态叠加与纠缠等方面的特点, 指

出流体力学量子计算在初态制备、量子态演化和测量方面的挑战. 随后重点介绍量子−经典

混合算法、哈密顿模拟等流体力学量子算法, 以及综述它们在真实量子计算机上的硬件实

现进展. 总之, 目前流体力学量子计算仍处于萌芽阶段, 未来在量子计算硬件与算法方面均

面临诸多挑战. 与传统方法相比, 尽管量子计算尚未在模拟强非线性的流体力学问题上展示

出优越性, 但近期进展显示其有潜力来高效模拟湍流等复杂流动.
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 1  引　言

著名物理学家费曼于 1982 年提出, 按照量子力学原理建造的新型计算机求解量子模拟问题

(如量子多体问题) 可能效率远高于经典计算机 (Feynman 1982), 量子计算的概念应运而生. 在

此基础上, Deutsch (1985) 指出利用量子态的相干叠加性, 可以通过操纵叠加的量子态实现并行

计算, 奠定了量子计算具有加速能力的理论基础. 作为潜在的颠覆性技术, 量子计算在近半个世

纪蓬勃发展, 逐渐成为最引人注目的科研领域之一.

同时, 费曼亦曾指出: “湍流是经典物理中最重要的未解决问题” (Feynman et al. 2015), 此外

湍流在航空航天、大气海洋等领域中有诸多重要应用. 湍流表现为一类高度无序和混沌的流体

运动状态, 包含了无数旋涡的非线性相互作用, 覆盖了横跨多个数量级的时间与空间尺度. 这种

多尺度非线性动力学行为使得湍流的预测和控制极为困难. 高雷诺数湍流的直接数值模拟需要

巨大的计算资源, 远超当前最强超级计算机的能力, 因此量子计算在此算力需求极高的领域具有

巨大潜力 (陈坚强 等 2023). 然而, 由于湍流是典型的强非线性经典物理问题, 而非量子模拟问

题, 需要专门设计适合于求解流体力学问题的量子计算算法.

在流体力学量子计算 (quantum computing for fluid dynamics, QCFD) 这一新兴领域中 , 量

子计算有潜力解决湍流预测等流体力学基础难题, 为流体力学带来新的研究范式. 基于其在存储

信息能力的指数级增长和量子并行性的优势, 量子计算有望未来实现高雷诺数、高马赫数等复

杂流动问题的快速模拟, 以用于飞行器设计、天气预报等重要应用问题.

 1.1  量子计算原理

量子计算机根据算法和物理机制主要分为三类: 量子线路模型 (Chiribella et al. 2008)、绝

热量子计算模型 (Albash & Lidar 2018)(包括量子退火模型 (Das & Chakrabarti 2008)) 和拓扑量

子计算模型 (Nayak et al. 2008). 我们将以最为常见的量子线路模型为例, 简要介绍量子计算的

原理、基本概念和基本特性.

|0⟩ = [1, 0]T |1⟩ = [0, 1]T |ψ⟩ = a|0⟩+ b|1⟩

|a|2 |b|2 |ψ⟩ |0⟩ |1⟩ |a2|+ |b2| = 1 |ψ⟩

量子计算的一大特点是态的叠加. 量子比特 (qubit) 是量子计算机中的信息单元, 它除了处

于“0”态    或“1”态    外 , 还可处于叠加态    , 其中 a 和 b 为复系

数 . 因此 , 叠加态是“0”态和“1”态的任意线性叠加 , 即量子比特既可以是“0”态又可以是“1”态 .

 和    分别表示    为    态和    态的概率, 且    , 即    是单位向量. 量子比特可

通过测量而依概率坍缩为确定的“0”态或“1”态. 图 1(a) 中的 Bloch 球给出一个量子比特状态的

几何图像, 便于直观地理解单量子态. 量子比特可通过一个双态量子系统得以物理实现, 例如氢

原子中的电子的基态和第一激发态、质子自旋在任意方向的+1/2 分量和−1/2 分量、圆偏振光

的左旋和右旋等.

|00⟩ |10⟩ |01⟩

|11⟩ 2n

C2n

两个量子比特的计算基矢为两个单量子比特计算基矢的直积组合 , 即    、    、    和

 , 由此可推广到 n 个量子比特的一般情况. 因此, n 个量子比特的叠加态可用    维 Hilbert 空

间    (即复向量空间) 来描述, 即
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|ψ⟩ =
1∑

q1=0

1∑
q2=0

· · ·
1∑

qn=0

cbinary(qnqn−1···q2q1)

n⊗
j=1

|qj⟩ (1)

binary(qnqn−1 · · · q1) qj ∈ {0, 1} c0, c1, · · · , c2n−1∑2n−1

j=0
|cj |2 = 1

2n − 1

2n

式中,    表示一个 n 位二进制数,    ,    为复系数, 满足归

一化条件    . 从而在量子计算机中, 处于叠加态的 n 位量子寄存器中的计算基是从

0 到     所有的数, 它们各以一定的概率同时存在. 在经典计算机中, 1 个 n 位寄存器只能保

存 1 个 n 位二进制数 ; 而在量子计算机中 , 1 个 n 位量子寄存器可以同时保存    个 n 位二进制

数, 如图 2(a) 所示. 量子寄存器存储的信息量随 n 指数增长, 而在测量 (即读出) 时其叠加态坍

缩, 只能测得某一个 n 位数.

|ψ⟩A =
1√
2
(|00⟩+ |11⟩) |ψ⟩B =

1√
2
(|01⟩+ |10⟩) |ψ⟩C =

1√
2
(|00⟩+ |01⟩) = 1√

2
|0⟩ ⊗ (|0⟩+ |1⟩)

|ψ⟩A

|ψ⟩B

|ψ⟩C

|0⟩

|ψ⟩ = 1√
2n

∑2n−1

x=0
|x⟩

量子计算的另一大特点是态的纠缠. 多个量子比特的态如不能表示成直积的形式, 则称这些

量子比特处于纠缠态 . 例如    和    为纠缠态 , 而  

 不为纠缠态. 当多个量子比特处于纠缠态时, 对部分量子比

特态的测量将影响其他量子比特态的测量. 例如测量    时, 测量一个量子比特的态, 将使另一

个量子比特的态与之相同, 如图 2(b) 所示; 测量    时, 测量一个量子比特的态, 将使另一个量

子比特的态与之相反; 而测量    时, 对右边量子比特的态不管如何测量, 左边量子比特的态总

是为    . 在量子计算中合理利用纠缠态的性质, 可以设计出高效的量子态演化和测量算法. 由

Hilbert 空间的线性性质, 对处于叠加态的    进行酉变换可表示为

Uf |ψ, 0⟩ = Uf
1√
2n

2n−1∑
x=0

|x, 0⟩ = 1√
2n

2n−1∑
x=0

Uf |x, 0⟩ =
1√
2n

2n−1∑
x=0

|x, f(x)⟩ (2)

|ψ, 0⟩ ≡ |ψ⟩ ⊗ |0⟩ 2n − 1式中,    , 因此在量子计算中一次酉变换可以产生从 0 到    所有计算基各自所
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···
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·
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···

·
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·

1:|0

2:|0

3:|0

-2:|0

-1:|0

:|0

初态制备

输
入
态

输
出
态

量子态演化 统计测量

|0

|1










|

a b

 

图 1

x = sin θ cosφ y = sin θ sinφ z = cos θ

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ |0⟩ |1⟩

U1, U2, · · · , Uk

量子态和量子计算过程示意图 . (a) 单量子比特状态的 Bloch 球表示 , 可用三维笛卡尔坐标

 ,    ,    描述 , 为量子态提供几何图像 . 任意单量子比特状态

 可用球上的一个点来表示,    态位于北极,    态位于南极. (b) 量子计

算机的计算过程分为初态制备、量子态演化和统计测量三步, 图中量子门    均为酉

变换

第 3 期 孟昭远, 卢臻, 熊诗颖, 赵耀民, 杨越 : 流体力学量子计算研究进展 543



|f(x)⟩ f(x)

2n 2n

对应的函数值, 即所有 x 的    , 这种特性称为量子并行. 在经典计算机中, 计算所有 x 的  

需要    次循环或    个处理器并行工作, 而在量子计算机中, 只需一次变换就可完成, 如图 2(c)

所示.

U UU † = I U †

U |ψ⟩ = |φ⟩ U †|φ⟩ = |ψ⟩

U U †

此外, 量子计算中量子态的演化具有可逆性. 通过量子门可对量子比特的态进行变换, 从而

实现多种逻辑运算. 为了维持量子态所在的 Hilbert 空间本征态的正交归一性, 对量子态进行变

换的算符    应为酉或幺正 (unitary) 矩阵, 即    , 其中 I 为单位阵,    为 U 的共轭转置矩

阵. 酉变换具有可逆性, 即    ,    , 因此量子逻辑门也具有可逆性, 即输入态经

过相当于    变换的量子逻辑门成为输出态, 输出态经过相当于    变换的量子逻辑门又成为输

入态. 在经典计算机中, “与”门、“或”门等是不可逆的, 而量子逻辑门是可逆的.

Ui, i = 1, 2, · · · , k

量子计算机的典型计算过程如图 1(b) 所示, 该过程由量子算法决定, 不同的算法由不同的

酉变换构成. 图中的初态制备线路将输入数据置于所需的初始态, 初始态经过一系列量子门变换

后得到输出态, 其中    为酉变换, 最后经过统计测量得出结果. 由于量子计算的

测量结果是概率性的, 需要重复计算和测量多次后得到所需精度的结果.

量子计算领域分为模拟和数字量子计算两个主要分支. 模拟量子计算致力于利用量子系统

模拟其他量子系统的行为, 这对理解复杂的量子现象和新材料的开发至关重要, 通常用于研究量

子物理、化学和生物学中的复杂系统 , 例如分子结构、相变以及量子相干性  (Buluta & Nori

2009, Cirac  & Zoller  2012, Georgescu et  al.  2014, McArdle  et  al.  2020, Daley et  al.  2022, Shao

et al. 2024). 数字量子计算旨在构建能够解决各种一般问题的通用量子计算机, 通过设计量子算

 

a

+ + + +

1个位二进制数

2个位二进制数以一定概率叠加

1···001

···

···

···

···

1

1, 2, ···, =0

binary(···21)



=1

|

量子态叠加

经
典
比
特

量
子
比
特

概
率

c

+ + + +

+ + + +

量子并行



1

√2

2-1

=0

2-1

=0

|, 0

→ |, ()

b 量子纠缠

| =|1 |2

|0

|0



0.5 0.5

|00 |11
+

+




1

√2


 

图 2

2n − 1

2n − 1

(|00⟩+ |11⟩)/
√
2

2n − 1

量子计算基本特性总结. (a) 在经典计算机中, n 位寄存器中保存 0 到    中的一个数; 而在

量子计算机中, 处于叠加态的 n 位量子寄存器中同时保存 0 到     所有的数, 它们各以一定

的概率同时存在. (b) 制备两比特纠缠态的最简量子线路: 输出态    不能写成两个

量子态的直积, 即两个量子比特处于纠缠态; 测量纠缠中一个量子比特的态, 将使另一个量子比

特的态与之相同. (c) 量子计算具有类似于并行的特性, 对叠加的量子态进行一次酉变换, 可产

生从 0 到    所有取值各自所对应的函数值. 其中不同或相同颜色的量子比特分别代表它们

之间存在或不存在纠缠
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法解决密码学、材料科学、药物设计以及经典力学系统模拟等问题 (Bernstein & Lange 2017,

Louie et al. 2021, Santagati et al. 2024, Babbush et al. 2023). 总体而言, 模拟与数字量子计算各

有不同的应用前景和挑战, 但共同目标是利用量子力学原理解决传统计算无法处理的问题.

近几十年来 , 一些针对特定问题的高效数字量子计算算法被提出 , 例如大数因子分解的

Shor 算法 (Shor 1994, 1997)、快速搜索数据的 Grover 算法 (Grover 1996, Bennett et al. 1997)、

求解线性方程组的一系列算法  (Harrow et al.  2009, Childs et al.  2018, Low & Chuang 2019,

Gilyén et al. 2019, Subaşı et al. 2019, Lin & Tong 2020, An & Lin 2022, Costa et al. 2022, Willi-

ams et al. 2024) 以及无结构图的量子游走方法 (Aharonov et al. 1993, Kempe 2003) 等 , 这些算

法的理论复杂度远低于对应的经典算法, 具有极大的应用潜力. 然而, 目前的量子计算原型机尚

处于含噪声中等规模 (noisy intermediate-scale quantum, NISQ) 阶段 (Bharti et al. 2022), 还不足

以在一个有实用价值的计算规模上运行以上量子算法并得到足够精度的结果. 而令人振奋的是,

目前的 NISQ 硬件针对一些特定量子模拟问题, 例如 Gauss–Bose 采样、随机线路采样、随机量

子游走等任务 , 已相比经典计算展示出了加速优势  (Arute et al. 2019, Zhong et al. 2020, Wu

et al. 2021, Zhong et al. 2021, Hangleiter & Eisert 2023). 但由于目前量子硬件和算法的种种限

制, 尚未在量子真机上充分展示具有实用价值的量子优越性 (Daley et al. 2022, Kim et al. 2023,

Hibat-Allah et al. 2024, Begušić et al. 2024).

 1.2  流体力学量子计算的挑战

将量子计算技术应用于流体力学 , 特别是用于经典物理中最具挑战性的湍流问题 (Feyn-

man et al. 2015), 不仅能为流体力学带来新的研究范式, 还将利用量子计算在存储信息与并行性

的优势, 期望在工程应用中实现高雷诺数、高马赫数复杂流动问题的高效数值模拟; 同时, 也能

为量子计算领域提供一个极具说服力的、具有实际量子优越性的案例, 从而促进两个学科的交

叉融合与发展.

|0⟩⊗n

[1, 0, 0, · · · , 0]T

2n κ 1/ε

O(2n)

与经典 CFD 流程相似, 大部分 QCFD 模拟也可大致分为前处理、求解器、后处理三部分.

在 QCFD 前处理中, 需要将流场信息编码为状态向量并制备为量子态, 如图 3 所示, 其中所需的

量子初态制备是使用数字量子计算方法求解微分方程、线性方程组等面临的普遍难题. 量子计

算机中的初始化通常对应于置零操作, 这意味着我们可以较容易地获得量子态    , 即列向量

 . 为了将这个零态转换成与给定初始条件相对应的初态, 需要写出相应的酉变换并

分解为基本量子门进行操作. 然而, 目前尚无有效的分解算法能使相应的量子算法对任意初态同

时具备对总格点数    、初态条件数    以及精度    的对数复杂度 (Shao 2018), 通常精确制备一

个 n 量子比特初态的时间复杂度高达    . 这一初态制备问题有望在未来借助量子随机存储

器 (quantum random access memory, QRAM) (Giovannetti et al. 2008) 技术得到解决.

在 QCFD 的方程求解中, 由于量子力学的本质是线性的, 将非线性流体力学方程组的时间

演化转化为量子态演化同样是一个巨大的挑战 (Tennie et al. 2025). 除了量子测量操作, 量子力

学的幺正、线性和可逆演化算子可以通过一系列酉量子门 (量子线路模型) 来实现. 假设速度场

是通过波函数振幅编码表示, 即所有网格点的速度分量大小均由波函数振幅编码, 则不可克隆定
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u2

u′ = u u× u′

理 (Wootters & Zurek 1982) 禁止使用这些振幅的临时副本, 导致诸如    的非线性项在量子计算

机中不能通过存储临时副本    并经由    计算 . 其次 , 由于量子态的二范数归一化限制 ,

所有振幅的模都小于 1(除非仅有一个非零振幅, 其模为 1). 进行非线性运算后, 量子态的二范数

必然小于 1, 失去了归一性, 因此相应的算符不可能是酉的. 此外, 由于非线性演化算子会根据量

子态本身将其旋转一个角度, 无法保证本征态的正交性. 最后, 因为真实流动具有黏性耗散, 时

间演化算子通常是非酉的 (Ashida et al. 2021), 因此通常需要引入辅助变量扩展 Hilbert 空间, 从

而将非酉算符映射为酉算符 (Schlimgen et al. 2021, Jin et al. 2023b).

在处理非线性问题时 , 一些研究尝试基于线性化操作设计量子算法 , 如 Carleman 线性化

(Liu  et  al.  2021, Sanavio  et  al.  2024)、转换为  Fokker–Planck 方程  (Tennie  &  Magri  2024)、

Koopman–von Neumann 方程 (Joseph 2020, Jin et al. 2023c) 和 Liouville 方程 (Jin et al. 2023c,

Succi et al. 2024) 等. 然而, 这些线性化方程需要对原问题进行升维处理, 且只有当升维后的维度

是原问题维度的多项式时, 量子算法才能实现有效加速, 这种情况通常对应于耗散主导的弱非线

性情况. 对于强非线性的混沌系统, 已证明这类方法具有局限性, 难以实现有效的量子加速 (Jin &

Liu 2024, Lewis et al. 2024, Brüstle & Wiebe 2024).

O(3n)

在 QCFD 的后处理中, 尽管密度、速度和温度等流场信息被编码在量子态中, 但它们无法

由传统硬盘读取方式直接提取, 需根据量子力学原理通过统计测量来重建. 每次测量后, 量子态

会坍缩到测量算符的一个本征态, 因此每次测量之后都需要重复初态制备和量子态的演化过程,

以重新得到所需测量的量子态. 若要通过统计测量来重构全部流场信息, 需执行完整的量子态层

析, 即测量每个 Pauli 字符串 (由 Pauli 算符 I, X, Y, Z 组成的序列) 的期望值. 因此, 对于 n 个量

子比特, 测量的复杂度高达    . 然而, 在实际流动问题中, 我们通常不需要关注所有网格点上

的详细流场信息, 而是更为关心一些统计量, 如降水概率和飞机升力. 因此, 没有必要从量子态

中提取所有存储的海量信息. 为降低测量成本, 可在测量前对量子态进行预处理, 如通过设计精

巧的酉变换, 将需测量的统计量集中到少数几个量子比特上, 从而以更低的成本进行精确测量.

综上所述, QCFD 要同时面对初态制备、量子态演化和测量这三大核心挑战. 其中初态制备

是科学计算与量子计算交叉领域中的共同难题, 而专门为非线性流体力学方程设计量子态演化

算法则是 QCFD 的独特难题. 此外, 尽管测量也是量子计算中的一个普遍问题, 开发高效的流体

统计测量方法同样需要结合流体力学的专业知识.
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图 3

流场的量子初态制备示意图. 将流场信息编码为量子态, 并将该量子初态制备过程分解为多项式

复杂度的基本门操作, 是 QCFD 面临的难题之一
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 2  流体力学的量子算法进展

随着量子计算软硬件的迅速发展, 近几年来涌现出多种模拟流体运动的量子算法, QCFD 研

究方向应运而生 (Bharadwaj & Sreenivasan 2020, Meng & Yang 2023, Succi et al. 2023, Bharad-

waj & Sreenivasan 2024b, Tennie et al. 2025). 现行 QCFD 算法主要分为两大类: 一是量子−经典

混合算法, 其中量子和经典计算机各自承担部分计算任务; 二是哈密顿模拟算法, 在量子计算机

上实现完整计算过程. 这两类算法的计算流程示意图见图 4, 下文将简要介绍它们的基本概念和

研究进展.

 2.1  量子−经典混合方法

 2.1.1  量子线性方程求解器

如第 1.2 节所述, QCFD 面临着与非线性和非酉性相关的挑战, 加之 NISQ 时代硬件对量子

线路深度的限制, 使得 QCFD 中的大多数现有研究都采用了量子−经典混合方法. 在此类方法中,

量子计算机负责执行那些已有高效量子算法的计算任务, 其输出传递给经典计算机, 完成尚不适

宜用量子算法处理的计算部分.

|ψ0⟩

|ψ1⟩ |ψ1⟩ O1 O1 O2

O2 |ψ2⟩

|ψ0⟩ |ψ1⟩ O1

|ψ1⟩

O(3n) O2 |ψ2⟩

O(2n)

在量子−经典混合算法的一个时间步中, 首先需要用量子算法将初始量子态    转变为一中

间量子态    , 接着测量    获得可观测量    . 然后利用经典算法根据    计算出    , 其中通常

涉及很多强非线性运算, 并用    来重构新的量子态    . 这个新态将作为下一时间步的初始态

 , 以便进行下一时间步内的量子态演化. 对于 n 个量子比特, 从量子态    到可观测量    的

转换需要进行量子测量. 因为量子态无法重复使用, 必须多次运行    的制备线路, 其测量复杂

度为    . 另一方面, 从可观测量    重构量子态    涉及到第 1.2 节所述的初始态制备过程,

任意初始态的精确制备复杂度为    . 因此, 每个时间步内量子与经典数据之间的交换显著增

加了量子−经典混合算法的计算复杂度, 在目前的存储技术条件下可能导致整个计算过程无法有

效加速 (Aaronson 2015).

一个典型的量子−经典混合算法是将量子线性方程组求解器集成到传统的 CFD 算法中

(Chen et al. 2022, Lapworth 2022, Liu et al. 2023, Bharadwaj & Sreenivasan 2023, Ye et al. 2024,

Chen et al. 2024, Bharadwaj & Sreenivasan 2024a), 其计算流程图见图 4(a). 该方法的核心思想

是利用当前高效的量子算法来求解稀疏线性方程组 , 如 Harrow–Hassidim–Lloyd (HHL) 算法

(Harrow et al. 2009)、酉矩阵线性组合 (LCU) (Childs et al. 2018)、量子奇异值变换  (Gilyén

et al. 2019)、随机方法  (Subaşı et al. 2019)、迭代法  (Williams et al. 2024) 以及量子绝热方法

(Low & Chuang 2019, Lin & Tong 2020, An & Lin 2022, Costa et al. 2022) 等 . 图 5 给出了当前

广为应用的 HHL 算法量子线路.

O(log(N)κ log(1/ε)) ε κ

目前复杂度最优的离散量子绝热算法  (Costa  et  al.  2022) 的计算复杂度已被缩小到

 , 其中 N 为矩阵大小、    为误差、    为矩阵条件数. 这些量子线性求解器算法

作为独立模块嵌入到 CFD 算法中, 而其他非线性操作如矩阵组装和非齐次列向量的计算则仍在
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经典计算机上执行. 另一种相似的方法是将求解泊松方程的量子算法融入传统的 CFD 算法中

(Steijl & Barakos 2018), 同样源项计算中的非线性操作也需在经典计算机上执行.

然而, 以上量子线性方程求解算法一般均需很深的线路层数, 故需通用容错量子计算机才能

实现. 此外, 在 NISQ 时代可基于变分量子算法求解线性方程组以降低量子线路深度 (Xu et al.

2021). 由于优化过程需在经典计算机上完成, 这是一种求解线性方程组的量子−经典混合算法.

 2.1.2  量子拉格朗日涡方法

拉格朗日涡方法 (Lagrangian vortex method, LVM) 是一类通过追踪表示涡通量的离散涡元,

模拟流体运动的数值方法, 已广泛应用于空气动力学、海洋工程和气候模拟等领域 (Cottet &

Koumoutsakos 2000, Liu et al. 2017). 尽管 LVM 在处理复杂边界条件和强非线性流动方面表现

出色 , 但其涡元位置初始化与更新过程计算量大 . 由于量子态与 LVM 的联系可通过涡通量与

Berry 相位的路径依赖性进行类比 (Thouless et al. 1993), 故 LVM 的量子算法有望大幅度提高涡

元初始化与演化的计算效率.

u ℏ > 0

ℏ/(2π) ω = ∇× u

ψ Re(ψ) = 0 Im(ψ) = 0

min
∥ψ∥=1

⟨ψ|Ĥ|ψ⟩ Ĥ

|ψ⟩ |ψ⟩ = U(θ)|0⟩⊗n

在量子涡方法中, 初态制备需要从给定的速度场中提取涡元位置, 并将其编码为量子态. 该

问题可表述为, 在一给定速度场    和一个强度参数    , 寻找一组有向曲线 (二维情况为点)

表示强度为     的涡丝, 并近似表示涡量场    . Weißmann 等 (2014) 提出通过复函

数场    的零集来隐式表示涡丝曲线, 即通过求解    和    等值面的交线 (如图 6 所

示), 将涡丝提取问题转换为最优化问题    , 这里的算符    由给定速度场确定. 用经典

方法求解该最优化问题通常非常耗时, 而量子计算的加速潜力为此提供了可能的解决方案. 该量

子最优化问题通过参数化酉变换来实现量子态    的制备, 即将    表示为一个通用
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图 4

量子−经典混合算法与哈密顿模拟算法计算流程图对比. (a) 利用量子线性求解器的量子−经典混

合计算流程图. 在经典计算机上, 首先计算离散微分方程在当前时刻的矩阵和非齐次列向量, 结

果用于设定量子线性求解器的参数. 随后进行初态制备, 并利用量子线性求解器求解线性方程

组, 获得归一化的解向量. 通过量子态层析将提取出的解向量输入到经典计算机中, 计算下一个

时刻的矩阵元素. 推进时间步需重复这一循环过程, 任一时刻的数据处理均在经典计算机上完

成. (b) 基于 NS 方程的自旋量子表示, 将流体动力学模拟转化为求解双分量薛定谔方程 (Meng &

Yang 2024b). 在量子计算机上, 对该薛定谔方程进行时间积分, 从而基于该哈密顿模拟流程实现

端到端的量子计算
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U(θ) θ

minθ⟨0|U†(θ)ĤU(θ)|0⟩

参数化酉算子    作用在 n 比特的基态上, 其中    为参数向量. 这样原最优化问题转化为量子最

小特征值问题    , 并通过变分量子特征求解器进行求解 (Cerezo et al. 2021,

Tilly et al. 2022).

对于后续的涡元演化过程, 经典 LVM 中涡元相互作用的计算复杂度随着涡元数量增加呈幂

次增长. 在量子 LVM 中, 考虑到涡元运动的非线性特征, 可以对涡元对应的量子态进行线性化

近似, 从而实现时间步推进, 该近似和动态模态分解的思想类似 (Schmid 2010). 目前已有研究尝

试将量子态演化引入涡方法的经典算法中 (Ishida et al. 2022, Xiong et al. 2021), 但量子 LVM 在

实际应用中仍面临一系列 QCFD 中的共同挑战, 特别是 LVM 能将流体场表征为低维结构, 但从

量子态中高效提取这些结构信息仍需新方法.

 2.2  哈密顿模拟方法

由于量子−经典混合算法涉及频繁的量子与经典硬件间的数据交换, 且这些交换在每个时间
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图 5

|0⟩⊗nb

|0⟩

|1⟩ |x⟩
|0⟩

求解线性方程组 Ax = b 的 HHL 算法的量子线路 . 首先在量子寄存器    中制备列向量 b 初

态, 然后利用量子相位估计得到矩阵 A 特征值的二进制表示, 对初态为    的辅助量子比特施加

受控旋转, 随后进行量子相位估计的状态反演, 最后对辅助量子比特进行量子测量. 若测量结果

为    , 则量子寄存器中编码的是归一化的解向量    . 此外, 一些 HHL 的改进算法可以有效利用

辅助量子比特测量结果为    时量子寄存器中的信息 (Babukhin 2023, Tsemo et al. 2024), 从而

避免该预选择过程

 

 

图 6

ψ Re(ψ) = 0

Im(ψ) = 0 Re(ψ) = 0 Im(ψ) = 0

从复函数场    的零等值面中提取涡丝. 半透明红色曲面为等值面    , 半透明蓝色曲面为

等值面    , 黄色曲线为    和    的交线
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步内所需时间往往远超过求解方程本身的计算时间, 导致整个计算过程难以有效加速 (Aaron-

son 2015). 因此, 为避免在量子计算中频繁测量和初态制备, 开发端到端的 QCFD 算法显得尤为

重要. 由于量子计算机是基于量子力学原理运行, 即量子态演化遵循薛定谔方程, 此类哈密顿模

拟方法在 QCFD 中首先需将流体问题转换成薛定谔方程的形式 (Meng & Yang 2023)

iℏ
∂

∂t
|ψ⟩ = Ĥ|ψ⟩ (3)

i =
√
−1 |ψ⟩ Ĥ

U = e−iĤt Ĥ† = Ĥ

式中 ,    ,    为满足归一化条件的状态向量 ,    为哈密顿量 . 为保证相应的演化算符

 是酉算符, 哈密顿量需要满足厄米性, 即    . 这种方法实质上是将一个经典问题

转换为特定哈密顿量描述的量子力学系统 , 然后借助量子计算机来量子模拟这个哈密顿系统

(Lu & Yang 2024, Brearley & Laizet 2024, Sato et al. 2024).

 2.2.1  一般线性偏微分方程的薛定谔化

对一般的线性偏微分方程做空间离散后, 可得线性常微分方程组

du
dt

= Au+ b (4)

式中, u 为待求解列向量, A 为系数矩阵, b 为非齐次列向量. 然而, 直接对空间方向进行编码通

常无法使状态向量的二范数对应系统的守恒量, 即状态向量不能保持归一化, 对应于系统的能量

集中或耗散现象, 如图 7 所示. 因此, 通常得到的算符 A 是非厄米的, 对应非酉的时间演化算子.

这使得无法直接在量子计算机上使用哈密顿模拟方法来对该半离散方程进行时间积分.

ui+1 = Fui

|0⟩ |ui+1⟩

1/2t/∆t ∆t

一种直接的解决方法是采用显式欧拉格式在时间方向离散, 得到    , 其中 i 表示某

一时刻 . 对于非酉算子 F, 引入一个辅助量子比特 , 通过块编码  (Low & Chuang 2017, Low &

Chuang 2019) 或近似 (Brearley & Laizet 2024) 的方式实现对应单步时间推进的酉算子. 但在每

个演化时间步中, 都必须测量辅助量子比特使其坍缩到    态以得到该时刻的解    . 因此, 获

得所需量子态的概率为    . 同时, 时间步长    受限于显式欧拉格式的稳定性要求, 即成功

获得包含解信息量子态的概率随计算时间增加而指数减小. 所以, 该方法不适合长时间的演化.

目前有两种方法可以较好地解决该问题. 一是通过引入辅助变量, 使用“薛定谔化”变换 (Jin

et al. 2023b, Jin et al. 2024a), 在比原问题高一维的空间中将线性偏微分方程组转换为薛定谔方

程的形式. 然后, 直接应用哈密顿模拟来求解相应薛定谔方程, 并由此恢复出原始方程的解. 这

种方法可以基于离散的量子比特编码 , 也可以基于连续变量通过量子模 (qumodes) 实现 (Jin

et al. 2024b). 基于薛定谔化 , 已有研究通过量子模拟求解了反应流中的标量输运 (Lu & Yang

2024)、Maxwell 方程 (Jin et al. 2023a) 以及 Fokker–Planck 方程 (Jin et al. 2024b) 等特定问题,

此外也已得到求解一般线性偏微分方程的量子线路 (Hu et al. 2024)、以及探讨在求解非线性方

程中的扩展应用 (Liao 2024). 二是将非厄米算子分解为厄米部分和反厄米部分, 可以将原本非

酉的时间演化算符表达为一系列酉算符在谱空间的积分形式 (实际应用中需离散化为求和形式),

即酉算符线性组合方法 (An et al. 2023, Over et al. 2024, Novikau & Joseph 2025). 该方法已被

证明具有最优的初态制备复杂度.
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 2.2.2  Navier–Stokes 方程的量子表示

对于宏观流体的一般流动, 可在 Navier–Stokes (NS) 方程与 Schrödinger–Pauli (SP) 方程之

间建立数学映射 , 即对于 NS 方程所描述的牛顿黏性流体运动 , 写出等价量子表述的哈密顿量

(Meng & Yang 2023, Meng & Yang 2024b). 如图 8 所示, 对于从简单到复杂的流动, 流体动力学

方程的量子表示逐渐从对应势流转变为对应真实黏性流. 对于 NS 方程描述的黏性流, 相应的非

线性 SP 方程描述了自旋 1/2 粒子的运动, 用双分量波函数刻画粒子状态, 并通过非厄米虚数扩

散引入黏性耗散 (Salasnich et al. 2024). 密度、速度等经典物理场可经显式运算由波函数重构.

因此, 可将经典黏性流体运动视为一个特殊的非厄米量子自旋系统. NS 方程与 SP 方程之间的

映射证明了量子模拟处理真实流体问题的可行性, 其计算流程如图 4(b) 所示.

然而, 该自旋量子表示具有一定的局限性. 对于存在涡量零点或非闭合涡线的速度场, 可能

无法找到一个全场光滑的波函数 (Meng & Yang 2024a), 即 SP 方程的初始条件是 NS 方程的一

个子集 . 不过对于任意指定的速度场 , 可以通过数值优化方法来获得波函数的近似值 (Chern

et al. 2017, Su et al. 2024). 此外, 自旋量子哈密顿量的非线性和非厄米特性使得设计相关有效的

量子算法成为挑战. 平均场非线性量子算法 (Lloyd et al. 2020, Großardt 2024, Brüstle & Wiebe

2024, Esmaeilifar et al. 2024) 在一定程度上解决了非线性的问题, 可通过利用 n 个相同量子态的

拷贝之间的对称相互作用来近似单个量子态的非线性演化. 另一种方法是平均场线性化, 它将作

用于单个粒子的非线性势转换为量子多体系统中的线性相互作用. 对于哈密顿量的非厄米部分,

由于它是反厄米的 (Ashida et al. 2021), 可通过引入辅助变量在基于门的量子计算机上实现哈密

顿模拟. 总之为这类量子系统设计有效的量子算法仍是值得探索的问题 (Zylberman et al. 2022).

值得一提的是, 利用该自旋量子表示的简化版, Meng 等 (2024) 在当前 NISQ 时代的超导量子计

算机上已实现了端到端的二维非稳态流动的量子模拟, 相关内容将在 3.2 节中详述.

 2.2.3  量子格子玻尔兹曼方法

格子玻尔兹曼方法 (lattice Bolzmann method, LBM) 是一种基于粒子的计算流体力学方法,

 

升维
低维：非酉 高维：酉

时间演化

 

图 7

“薛定谔化”变换或酉算符线性组合方法的示意图. 对一般线性偏微分方程, 直接对空间方向编码

通常无法使状态向量的二范数对应系统的守恒量, 即状态向量不能保持归一化, 对应于系统演化

中产生能量集中或耗散现象, 如左图所示对应于非酉的演化算符. 通过引入辅助变量 (如右图中

的转角), 左图中随时间耗散的量转化为右图中随时间不变的半径, 从而低维空间中的非酉算符

映射为高维空间中的酉算符
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它通过在离散的网格上模拟粒子分布函数的演化, 可以有效地模拟流体运动, 特别是涉及多相、

复杂边界条件以及微观尺度的流动现象. 通过适当的近似和展开, LBM 可以在连续介质极限下

重构出 NS 方程.

LBM 是一类流体的哈密顿描述, 而其中求解非线性碰撞项存在挑战, 这也是非线性方程量

子算法设计中的共性问题. 以往对量子 LBM 的研究主要分为两部分: 一是使用 Carleman 线性化

等方法将 LBM 方程转换为更高维空间的常微分方程组  (Itani  & Succi  2022, Sanavio et al.

2024b, Kumar & Frankel 2024, Itani et al. 2024), 但对于强非线性流动难以实现有效的量子加速.

二是针对某些特殊情况下的流动, 例如极其稀薄的气体, 可以忽略粒子碰撞项或将其只保留一阶

线性项, 本质上求解的是一个简单的对流方程 (Budinski 2021, Budinski 2022, Kumar & Frankel

2025, Wawrzyniak et al. 2025).

为了实现量子算法中的碰撞项 , 一些研究者也开始关注 LBM 的前身−−格子气自动机

(lattice gas automata, LGA) 模型. 在 LGA 模型里, 流体被模拟为存在于格点上的一系列离散粒

子, 这些粒子会在固定的时间间隔内沿着格子的边缘移动到相邻的节点. 粒子之间的碰撞遵循一

套特定的布尔逻辑规则, 这些规则反映了流体的基本物理特性, 如动量和能量守恒. 在一定条件

下, LGA 模型也可以推导出 NS 方程 (Frisch et al. 1986). 由于布尔运算能够通过量子逻辑门实

现, 因此 LGA 比 LBM 更易实现量子算法 (Zamora et al. 2025, Singh et al. 2024, Kocherla et al.

2024, Wang et al. 2025).

 2.2.4  量子退火方法

量子退火是一种与量子线路模型不同的量子计算模型 (Das & Chakrabarti 2008). 它通过模

拟量子系统的退火过程, 并利用量子隧穿效应来搜索解空间, 以寻找问题的全局最优解或其近似

解. 量子退火尤其适合解决组合优化问题, 例如旅行商问题和图着色问题, 这些问题在传统计算

中往往难以有效解决. 量子退火算法通常在专用的量子退火机上运行, 但也可以在基于量子逻辑
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图 8

从简单到复杂流动的流体动力学方程的量子表示层级示意图 (Meng & Yang 2024b)
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门线路的通用量子计算机上进行模拟 (Barends et al. 2016).

在应用量子退火算法前, 需要将问题转化为二次无约束二值优化问题 (或 Ising 模型), 即哈

密顿量的最小化问题

argmin
σ

H = argmin
σ

∑
i,j

Jijσiσj +
∑
j

hjσj

 (5)

σ = ±1

H = ∥Ax− b∥22 Ax = b

式中,    , J 为格点间的耦合系数, h 为外磁场. 例如, 对于解线性方程组的问题, 取哈密顿量

 , 则当且仅当    时, 哈密顿量取最小值 0, 因此该最优化问题就等价于解线

性方程组 (Borle & Lomonaco 2022). 目前已有少数研究将流体模拟问题, 例如 NS 方程 (Rodríguez

et al. 2024)、LGA (Kuya et al. 2024) 和动态模态分解 (Asztalos et al. 2024), 转化为适用于量子

退火的 Ising 模型并设计退火算法.

 2.3  量子机器学习

机器学习已被广泛用于湍流建模、实验数据辅助处理、模拟方法优化等流体力学研究

(Brunton et al. 2020). 作为机器学习与量子计算的交叉领域, 量子机器学习近年来吸引了大量关

注 (Biamonte et al. 2017). 由于优化过程一般均需在经典计算机上完成, 故目前的大部分量子机

器学习算法均属于量子−经典混合算法. 量子机器学习往往针对量子系统而设计, 相较于传统机

器学习方法能更好地处理量子数据, 提升量子模拟的性能; 也可以有效利用量子计算优势, 加速

经典数据驱动算法 (Cerezo et al. 2022, Xu et al. 2024, Kuang et al. 2025). 针对经典系统数据, 各

类基于深度神经网络和传统最优化理论的量子计算算法相继被提出, 并通过实验验证其加速训

练的潜力. 在 QCFD 中, 这些量子机器学习方法可用于复杂流场的建模和预测, 提高数值模拟

效率.

量子神经网络 (Gupta & Zia 2001) 是量子机器学习的主流方法之一, 已被用于流体偏微分

方程的求解 (Yadav 2023), 在理论上具有快速并行加速潜力. 该方法可结合物理先验知识, 发展

为更加适配偏微分方程物理守恒性和数学对称性的物理信息量子神经网络 (Markidis 2022, Xiao

et al. 2024b). 近期, 已有研究通过量子计算实现深度算子网络 (Xiao et al. 2024a)、傅里叶神经

算子 (Jain et al. 2024) 等基于机器学习的偏微分方程求解器, 在一维 Burgers 方程, 二维 NS 方

程等问题上开展了验证. 这些方法展现出数据驱动算法加速的潜力, 未来有望进一步应用于大规

模三维流体问题的数值求解. 随着 NISQ 设备的发展与应用, 基于参数化量子线路的量子神经网

络算法逐渐成为研究热点 (Benedetti et al. 2019), 可应用于 QCFD 的初态制备等过程 (Su et al.

2024), 并可通过设计模型结构在一定程度避免“barren plateau”问题 (Grant et al. 2019).

此外, 也有其他量子机器学习方法已初步用于流体力学研究. 多分类量子支持向量机 (Bish-

was et al. 2020) 已被应用于机翼流动分离判定和来流攻角分类的问题 (Yuan et al. 2023); 量子

K 近邻算法 (Basheer et al. 2020) 在数据后处理中可避免量子态层析等测量过程 , 有潜力处理

QCFD 中的大规模高维数据 (Sajjan et al. 2022); 量子降阶模型 (Asztalos et al. 2024) 和量子储

层计算 (Mujal et al. 2021) 已用于二维热对流模拟 (Pfeffer et al. 2022, Pfeffer et al. 2023); 受量
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子多体物理启发, 利用基于降阶模型的矩阵乘积态对湍流中局部尺度进行编码, 并采用变分算法

求解 (Gourianov et al. 2022, Fukagata 2022, Peddinti et al. 2024); 以及用变分量子算法求解流

动和燃烧等现象中的非线性偏微分方程等 (Lubasch et al. 2020, Jaksch et al. 2023).

 3  流体力学量子计算的硬件实现进展

量子计算机硬件在近几十年间也取得了显著进展 (Ladd et al. 2010), 目前已有多种精确操

控量子比特的技术实现路线, 包括超导 (Kjaergaard et al. 2020)、离子阱 (Leibfried et al. 2003)、

里德堡原子  (Saffman et al. 2010)、光量子  (Zhong et al. 2020)、量子点  (Loss & DiVincenzo

1998)、核磁共振 (Vandersypen & Chuang 2005)、金刚石色心 (Prawer & Greentree 2008) 以及

拓扑材料 (Nayak et al. 2008) 等. 然而, 量子门保真度低和退相干时间短仍是当前量子计算硬件

面临的严峻挑战, 目前仅有极少数研究在量子真机上实现了较简单的 QCFD 模拟 (Meng et al.

2025). 下面将分别介绍基于量子−经典混合方法与哈密顿模拟方法的 QCFD 硬件实现进展.

 3.1  量子−经典混合方法

在目前 NISQ 时代, 量子计算机的量子比特数量有限, 约在数百量级; 量子门的误差率相对

较高, 约为 1‰ (Cheng et al. 2023). 这意味着即使在量子门保真度最高的设备上, 线路的最大深

度也被限制在一两百层. 因此, 目前无法在量子真机上实现深层线路, 并获得相应有意义的结果.

量子−经典混合算法的线路深度不会因时间演化步数的增加而变深, 且可将部分量子计算机尚难

以处理的运算交由经典计算机执行. 因此, 可以使用少量的量子比特来构建浅层线路, 让量子计

算机参与部分计算过程, 作为量子−经典混合算法的初步尝试.

大部分混合算法的真机实验都是基于量子线性求解器. 鉴于 HHL 算法 (Harrow et al. 2009)

需要深层量子线路, 不适宜在 NISQ 设备上运行, 这类研究通常采用变分量子算法和 LCU 等算

法求解线性方程组问题. 例如, Bharadwaj 和 Sreenivasan (2024a) 使用 LCU 算法在 IBM 的超导

量子计算机上, 用 3 个量子比特模拟了一维对流−扩散问题; Chen 等 (2024) 在本源的超导量子计

算机“悟空”上, 应用变分量子算法, 用 2 ~ 4 个量子比特模拟了二维不可压缩的 Poiseuille 流和线

性声波传播. 图 9 展示了上述研究在真实量子计算机实验中得到的速度剖面与经典数值结果或

理论解的对比. 当量子比特的数量较少时, 量子计算的实验结果与理论解吻合较好. 此外, 基于

降阶模型的量子储层计算 , Pfeffer 等 (2022) 和 Pfeffer 等 (2023) 在 IBM 的超导量子计算机上已

使用最多 7 个量子比特模拟了二维热对流现象. Song 等 (2025) 在 IBM 的超导量子计算机上, 以

二维顶盖驱动的方腔流为例, 采用变分量子算法用 4 个量子比特研究了当前 NISQ 设备的量子

门错误率是否能使得稳态流动问题的残差收敛, 其结果显示目前的量子门保真度远不足实现流

体方程的显式时间演化.

目前量子−经典混合算法在真实量子计算机上的实验研究仍处于初步探索阶段, 使用的量子

比特数量还很少. 由于这类模拟中的大部分计算任务仍由经典计算机完成, 而且现有研究并未明

确量子与经典计算各自的贡献比例, 因此难以断言此类量子计算是否带来了加速的优势.
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 3.2  哈密顿模拟方法

由于哈密顿模拟中无需在计算过程中频繁进行量子态层析与经典计算机的交互, 目前基于

该方法可比基于量子−经典混合算法的 QCFD 使用更多的量子比特. 然而, 随着所用量子比特数

的增加, 存在量子真机实现中的问题−−理论算法通常需要全连接的量子比特拓扑结构, 即每

两个量子比特之间都能进行双量子门操作, 但实际的量子计算机中量子比特通常呈棋盘式排列,

即一个量子比特仅与四个相邻量子比特相连. 因此, 需要借助变分量子算法对量子线路进行适当

的优化和近似 (Nemkov et al. 2023), 以适应目前量子芯片上量子比特排布的拓扑结构.

在超导量子计算机上, Meng 等 (2024) 利用第 2.2.2 节介绍的 NS 方程量子自旋表示, 已使用

10 个量子比特成功模拟了两种二维非稳态流动: 可压缩渐扩势流和薛定谔涡流. 实验中使用的

量子线路由任意单量子门和双量子门 CZ 组成. 图 10 展示了一个构建二维旋涡自旋波函数分量

的量子线路, 其中每一层的单 (双) 量子门可以同步操作. 但是, 单量子门和双量子门不能同时操

作, 且不能同时操作共用同一量子比特的多个双量子门. 线路完成后, 通过测量所有量子比特以

获得 Pauli 字符串的期望值 (如图 11 所示), 从而重构流体的密度场和动量场.

图 12 展示了 Meng 等利用超导量子计算机上的哈密顿模拟方法对可压缩渐扩势流和薛定

谔涡流进行实验的结果 . 该量子真机实验定量预测了流动主要演化过程 , 但由于 NISQ 时代量

子计算机存在显著噪声, 流场结果中显示出类似于湍流涨落的误差 (Meng et al. 2024). 特别是,

这种方法将含有特定源项的涡量动力学方程映射为线性双分量薛定谔方程, 因此在薛定谔涡流

的算例中包含了非线性的涡动力学过程. 另外, 由于量子比特性能的不一致性, 错误率较高的量

子比特可能会在结果的密度云图中造成图 12(a) 所示的条带状结构 (Meng et al. 2024). 因此 ,

量子设备中的噪声或可用来建模湍流涨落, 如通过开放量子系统的理论, 使用 Lindblad 主方程

来模拟退极化噪声 (Liu et al. 2024), 以及将其与湍流的随机微分方程理论相联系 (Pope 2011),

从而利用量子噪声来模拟湍流小尺度运动 , 以及与现有大涡模拟方法相结合  (Han & Yang

2025).

 

0 0.5 1.0
/

0

0.5

1.0



=2经典计算
量子计算

0 0.5 1.0
/

=3

0 0.5 1.0


0

0.5

1.0



T10-2

解析解
=2
=3
=4

a b

 

图 9

基于量子线性求解器的量子−经典混合算法的量子计算真机实验结果. (a) 使用 2 和 3 个量子比

特分别模拟一维对流−扩散问题, 并与经典计算结果进行对比 (Bharadwaj & Sreenivasan 2024a);

(b) 使用 2 ~ 4 个量子比特模拟不可压缩 Poiseuille 流 (Chen et al. 2024).
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此外, 还有少数研究也利用哈密顿模拟方法在量子真机上进行实验, 如 Wright 等 (2024) 使

用了 Quantinuum 公司 6 个量子比特模拟一维波动方程. 然而, 哈密顿模拟方法能够使用的量子

比特数量仍然有限, 主要限制因素是初态制备和量子态测量. 对于初态制备, 可尝试量子线路层

数较浅的特殊初态; 量子态测量则需设计高效的统计量提取算法, 以便将信息集中到少数比特

上, 避免测量所有量子比特.
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图 10

|0⟩⊗10

构建二维旋涡自旋向上波函数分量的 10 量子比特线路 (Meng et al. 2024), 包括任意单量子门 U
和双量子门 CZ. 从基态    开始, 通过 23 层同步的单 (双) 量子门操作, 可以制备目标量子态.

每层操控时间为 30(40) 纳秒, 总运行时间为 810 纳秒, 远低于量子比特的寿命. 线路完成后, 需

测量所有量子比特以重构流体的密度场和动量场
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图 11

二维可压缩渐扩势流的初始态下 Pauli 字符串的期望值 (Meng et al. 2024). 按绝对值降序排列,

绘制了精确解 (绿色)、CPFlow 模拟 (橘色) 和实验 (蓝色) 得出的前 20 个 Pauli 字符串的期望值.

实验数据的误差棒代表 10 个标准差, 横轴下的每个点阵序列代表一个 Pauli 字符串, 每个量子比

特根据对应的 Pauli 算符进行着色
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 4  总结与展望

本文首先概述了量子计算的基本原理, 剖析了流体力学在量子计算领域的主要挑战, 继而介

绍了流体力学量子计算的近期研究进展. 目前 QCFD 这一研究方向目前仍处于萌芽阶段, 在算

法方面面临三大难题: 如何高效精确地制备初始量子态、模拟非线性与非酉时间演化、测量关

键流体统计量. 特别是针对强非线性流体力学问题的模拟, 目前尚无有效的量子算法能够相比于

最优的经典算法显示出加速能力. 现有的量子算法主要集中在求解线性问题和弱非线性问题. 由

于流体力学中绝大部分问题为非线性, 故后续发展适用于 QCFD 时间演化中一般非线性问题的

高效量子算法是关键的研究方向.

10−3

在 QCFD 硬件方面, 目前各种技术路线的量子计算原型机能够达到的最低单个门错误率约

为    , 远高于经典计算机的错误率. 此外, 经典计算机在保持低错误率的基础上, 采用了多种

纠错机制确保计算结果的精确性和系统的稳定运行. 因此, 减少量子计算机与环境的相互作用,

降低噪声以减少错误率, 并实现量子纠错/错误缓解算法 (Terhal 2015), 是实现深层量子线路流

体模拟的关键. 同时, 现有量子计算原型机中量子比特的寿命 (与比特弛豫时间和退相干时间相

关) 相对较短, 特别是在超导量子计算机中, 量子比特的寿命通常仅为几百微秒, 这限制了实验

中线路的深度. 因此, 未来需要提升量子比特的稳定性和可扩展性, 以便量子计算机能够处理更

复杂的算法和更大规模的数据集. 此外, 量子计算机的物理架构可能会经历重大变革, 例如使用

新型超导材料或拓扑绝缘体来构建量子比特  (Ferreira & Loss 2013), 以提高操作速度和降低

能耗.
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图 12

π/2

在超导量子计算机上基于哈密顿模拟的实验结果 (Meng et al. 2024). 其中 (a) 可压缩渐扩势流,

(b) 薛定谔涡流. 图中从上至下分别为 t = 0 和    两个时刻的测量结果, 包括密度场 (蓝)、动量

场 (绿) 和涡量场 (紫), 其中动量场中绘制了若干流线
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Abstract　We review progress and challenges in the emerging field of quantum computing for fluid

dynamics  (QCFD).  Quantum  computing,  a  potentially  disruptive  technology,  is  expected  to  tackle

pressing problems in the real world. Fluid dynamics, a complex problem in classical physics and engin-

eering, can serve as an example to demonstrate quantum utility and advantage. Conversely, quantum

computing can introduce new paradigms in fluid dynamics research. In this review, we first introduce

quantum computing features, such as superposition and entanglement, and highlight the challenges of

QCFD in initial state preparation, quantum state evolution, and measurement. We then focus on hy-

brid  quantum-classical  algorithms  and  Hamiltonian  simulation  for  fluid  dynamics,  reviewing  their

hardware implementation on current quantum computers.  In conclusion,  QCFD is  in its  infancy,  fa-

cing  both  challenges  in  quantum devices  and  algorithms.  Although quantum computing  has  not  yet

shown  an  advantage  in  simulating  strongly  nonlinear  fluid  dynamics  over  classical  methods,  recent

progress suggests its potential in enhancing simulations of complex flows, including turbulence.

Keywords　 fluid mechanics, quantum computing, turbulence, vortex dynamics, computational fluid

dynamics
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